Memo December 5, 2007, from KS

This is continuation of Memo November 29, 2007. The limit of another nested

class of the ranges of stochastic integrals with respect to Lévy processes is considered.

Lemma. Let 0 < a < 2 and pp € Loo(RY). Then [g, |z|*n(dz) < oo if and only if
I#((0,a]) = 0 and [, 5 (8 — a)"'T*(dB) < oo.

This is proved in Step 7 of the proof of Theorem C in Memo Nov. 29. It follows
that if 1 < o <2, p € Loo(RY), and T'*((0, o) = 0, then [, |z[p(dz) < co.

Definition. Let 1 < o < 2. Let ng”(Rd) denote the class of 1 € Lo (R?) satisfying
I'*((0,0]) = 0 and [, zpu(dr) < co.

This class ng)ﬂ(]Rd) is closed under convolution, but is not closed under conver-

gence.

Theorem B'. Let 1 < a < 2, p(u) = u '™, and g(t) = [~ p(u)du for 0 < t <
o0o. Lett = f(s), 0 < s < oo, be defined by s = g(t), 0 <t < 0o. Define

(16) o= ([ reaxe).

Then the domain and the range of ®; are as follows:
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B € B(R%), where \ is a measure on S and he(u) is a function

measurable in & and, for \-a.e. £, not identically zero,

completely monotone in u € (0,00), and lim he(u) =0,

/R opldz) = 0}

Moreover,

D(0;) = {u € [(RY): /000 |CL(f(s)2)|ds < oo for z € RY}.

This result is in Theorems 2.4 and 4.2 of [S06].



Theorem C'. Let f(s) and ®; be as in Theorem B'. Let

T =R7(RY) = OP(D(P})), m=12....

Then

(17) IRY) DR} ORI D -,

(18) () ®p = LOARY).
m=1

Proof. Steps 1, 2, 3, and 4 of the proof of Theorem C do not need any change,
except to replace “Theorem B ” in Step 4 by “Theorem B’ ”.

Step 5. Let m be a positive integer. Let 1 = fi(a,,,) € I(R?) and fi = HArm) =
U™(w). Let us show that g € ©(®y) if and only if u € D(Pys). The “if” part is
already proved in Step 4, but the following proof shows it again.

Assume that p € ©(®f). Then Theorem B’ says that f‘$|>1 |z|*v(dz) < oo and

= — Jpa z|z]*(1+|2|*)"'v(dz). The discussion in Step 5 of the proof of Theorem C
shows that [, _, [z|*7(dz) < co. Further,
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where the last equality comes from the formula v(B) = fol ds [ga 1(tm(s)z)v(de).
Hence 11 € ©(®y).
Conversely, assume that i € D(®y). That is, [, |2]*¥(dz) < oo and 7 =

— JgazlzP(1 +|z[*)"'(dz). Then [, [z|*v(dz) < oo as in Step 5 of the proof of

Theorem C, and the equalities above show that

7= / (s (~ [ T L (e~ Topp) @)




On the other hand

v = /01 U (5)ds <7+ /Rdx <1 " |ujn(s)x|2 — 7 +1|x|2) y(dm)) .
o= [ s (4 [ 2eid),

Since fol U, (s)ds > 0, we obtain v = — [o, x|z[*(1+ |z[*)"'v(dz). Hence € D(Py).
Step 6. The same as Step 6 of the proof of Theorem C.
Step 7. Let p € Loo(R?). Then p € D(Py) if and only if
19 T(0.a)=0. [ (F-a)'r@h)<oe, and [ an(d)=0,
R4

(a,2)

Hence

where I' is the ['-measure of p. To show this, use Theorem B’ and Lemma at the top

of this memo.
Step 8. If 1 € Loo(RY) ND(®;) and I'(dB) and Ag(d€) are those of p in Theorem
A, and if 1 = ®;(p), then f € Lo (R?) with Lévy measure v being

(20 #(B) = /( T8 = or(as) / As(de) / T1p(rer . B e BRY,

Jga |z|fi(dz) < o0, and [o, zfi(dx) = 0. Recall that I'(6 —«a) ~ (B—a) ' as 3 | o
Indeed,
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that is, (20) holds. It follows from (20) combined with Lemma that [, [z|z(dz) < oo
To see [,q xfi(dz) = 0, use Theorem 4.2 of [S06].
Step 9. Let us show that

(a,2)

(21) ®y(Loo(RY) ND(2y)) = LEH(RY).

It follows from Step 8 that the left-hand side is included in the right-hand side. Let
= IAvy) € Lg)u(Rd) with v represented by T'(d3) and A\g(d€). Let uy € I(R?)



with triplet (Ao, v, 70) defined by
Ay = (T2 - )" A
vo(B) :/(Q’Q)(F(ﬁ_O‘))_lr(dﬂ)/)\ﬁ(df)/o 1p(ré)r=? " dr,

x|x|?
— [ EEC ().
o /Rd 1+ |x|? vo(de)

Then g € Loo(R?) ND(®f) by Step 7. The Lévy measure of ®;(u) equals v by
virtue of Step 8. Using Proposition 2.6 of [S06], we see that ® (1) = p, since

/0 ()2 Agds = T(2 — a)Ag = A

and since

”:‘/Rd 1+|||\ / s / ﬂﬁ;(ﬁ;fﬁ””(d”)
= [ st [ v <1+|f( >a:|2‘1>”°(d‘”)
= [ 1 (o = (e~ 1) )

Here we have used that v(B) = [ ds [ou 15(f(s)x)vo(dz). This shows that p €
Of(Loc(RY) ND(Dy)).
Step 10. We claim that, for any positive integer m,

(22) DT (Loo(RT) ND(PT)) = L HRY).

The proof is the same as Step 10 of the proof of Theorem C except to replace ng)
by L&f)ﬁ
Final step. Tt follows from Step 10 that () *_; R} O L&f)ﬂ(Rd). Let us show the

converse inclusion. It follows from Step 6 that
A7 C () Un-1(RY) = Use(R?) = Lo (RY).
m=1 m=1

Here we have used Jurek’s result that U, (R?) = L. (R?). Next, we claim that if
[t € Loo(R?) N R}, then I'*((0,0]) = 0 and [, zpu(dr) = 0. Indeed, if 1 € R}, then
i has mean zero as shown in Theorem B’ and the Lévy measure v* has expression
using A(d€) and he(u) in Theorem B’. On the other hand, if p € Loo(R?), then v
has expression using I'(df) = I'*(df) and Az(d¢) in Theorem A, which is rewritten



as

() = [ ) /() reas) [ 1€

= [ Mg [ 1uteyi /() AT (dB),

where \(df3) is a probability measure on S and Le(dp) is, for each £ € S, a measure
on (0, 2) such that f(0,2) (B +(2—8)"1T¢(dB) = const and I'¢ is measurable in £. In
fact, I'(dB) Ag(d€) = A(dE)T¢(dF). Now use the uniqueness of the polar decomposition
in Lemma 2.1 of [BMS06]. Thus, if z € Loo(R?) N R}, then there is a positive finite
measurable function ¢(§) such that A(d€) = ¢(§)A(d€) and that, for M-a.e. &,
he(r) =) [T =) [ ran)
0.2) (0,2)

Since he(r) — 0 as 7 — oo, we obtain I'¢((0,a]) = 0, which implies I'((0,a]) = 0.
This completes the proof that (°_, R} = L RY).



