Memo December 15, 2007, from KS

This is continuation of Memos November 29 and December 5. In the notation of
[S06], we have determined the limits of nested classes of the ranges of the iterations
of W, in the cases 0 < @ < 1 and 1 < a < 2. This time we study the case o = 1. But

this case is difficult to handle, and our results are partial.

Theorem B”. Let p(u) = u2e™, and g(t) = [~ p(u)du for 0 < t < co. Let
t=f(s), 0<s < oo, be defined by s = g(t), 0 <t < oo. Define

(23) o= ([ reaxe).
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Then D(®y), the domain of ®;, and D°(Py), the domain of absolute definability of

Oy, are as follows:
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This result is in Theorem 2.8 of [S06].

We write the triplet of u € I(RY) as (A*, v*,v*) and the decomposition of the
Lévy measure of y € Loo(R?) as I*(df3) and Nj(df).
Theorem C”. Let f(s) and ®f be as in Theorem B". Let

=R}P(RY) = (DY), m=1,2,....

Then
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Further,

(i) If € Moy RY, then p € Loo(RY) and T#((0,1]) = 0.

() It € Loo(RY, P40 1]) =0, f5,(5=1) ' T#(d0) < o0, and fy, op(de) =0,
then pe(_ R

(i) If p € Loo(R?), T#((0,1]) = 0, [4EN5(dE) = O for T#-a.e. B, and v = 0,
then pe(_ R

Proof. Assertion (i) can be proved in the same way as in the cases 0 < o < 1 and
1 < a < 2; see the proofs of Theorems C and C'.

Let us prove assertion (ii). Let p € Loo(R?) be such that T'*(( =0, fl 2)
1)7'T*(dB) < oo and [p, xpu(de) = 0 (that is, v* = —fRdI|x\ 1+ |x| )~ V“(dx))
Recall that, by Lemma in Memo December 5, [, |z|u(dz) < co. Define g € Loo(R?)

in such a way that
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we have f|x|>1 |z|v#0(dx) < oo by Lemma in December 5. It follows from the condition
on ¥ that [, zpo(dz) = 0. Further,
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Now it follows from Theorem B” that yy € (@) C D(Pf). In addition, ®¢(uo) = p,
since the Lévy measure of ®;(p) equals v* as in (20) in Memo December 5 and since
the location parameter of ® ¢(110) equals v as in Step 9 in Memo December 5. Thus we
see that 1 € @ (Lo (RY)ND(Py)). Since f(172) (B—1)"1T*(dB) < oo, we can similarly
define ppg € Loo(R?) and prove that pg = ® (o). That is, oo € Loo(R?) N ’D(Q);)
and @?(uoo) = p. Repeating this procedure, we see that, for any positive integer m,
there is fi(m) € Loo(R?) ND(PF) such that ®F(pu(m)) = p. This proves assertion (ii).
Next let us prove assertion (iii). Let u € Loo(R?Y) be such that T*((0,1]) = 0,
Js ENG(dE) = 0 for T¥-a.e. §, and v* = 0. Define g € Loo(R?) in the following way:

Abo = AP

[*(dg) = (T(8 — 1)) 'TH(dB),

NI (d€) = NA(d),

)= [ / X (d) / (e dr B e BRY),
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Then [y, |x|po(dr) < oo by Lemma in December 5 as before. We have
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Hence 0 = — [o, z|x*(1+ |z]?)~'v#(dx), that is, [y, xpo(de) = 0. Further,
/ vt (dz) = / I (dp) / NP (de) / rér="tdr
|z|>s (1,2) S s
= / I (dp) / ENG(dE) / r~Pdr = 0.
(1,2) S s

These together combined with Theorem B” imply that py € ©(®y). Let (A, v,7)
denote the triplet of ®¢(s0). Then
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where the integrability is checked as in page 6 of Memo November 29. Thus we have
®¢(po) = p. Repeating this procedure, we can find, for any m, pm) € Loo(R?) N
D (@) such that 7 (g (m)) = p. The proof of (iii) is complete.

Remarks. Let f(s) and ®¢ be as in Theorems B” and C”.

1. If g and po are in D(Py), then py * py € D(Pf) and Py * p2) = Pp(p) *
®(112). Hence, for each positive integer m, R is closed under convolution. Hence
the class () _, R} is closed under convolution.

2. The preceding remark combined with (ii) and (iii) of Theorem C” gives other
examples of p in (_, RF. For instance, if, for some ¢ € (0,1}, p € Loo(RY),
re((0,1]) = 0, [géA5(d€) = 0 for THae B € (1,1 +¢), and y* =

2.1 d
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|z|<a 1+ |J]|2

a—00



