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Infinite Divisibility for Stochastic Processes
and Time Change

Ole E. Barndorff-Nielsen1, Makoto Maejima2 and Ken-iti Sato3 4

General results concerning infinite divisibility, selfdecomposability, and the
class Lm property as properties of stochastic processes are presented. A
new concept called temporal selfdecomposability of stochastic processes is
introduced. Lévy processes, additive processes, selfsimilar processes, and
stationary processes of Ornstein-Uhlenbeck type are studied in relation to
these concepts. Further, time change of stochastic processes is studied, where
chronometers (stochastic processes that serve to change time) and base pro-
cesses (processes to be time-changed) are independent but do not, in general,
have independent increments. Conditions for inheritance of infinite divisi-
bility and selfdecomposability under time change are given.

KEY WORDS: Infinite divisibility; selfdecomposability; temporal selfdecom-
posability; class Lm property; time change; chronometer.

1. Introduction

The first purpose of the present paper is to study infinite divisibility, selfdecom-

posability, and the class Lm property as properties of stochastic processes. Several re-

lations between the various concepts and some basic properties are given in Section 3.

These concepts are studied especially for stationary processes of Ornstein-Uhlenbeck

type in Section 4. A new concept of temporal selfdecomposability of stochastic pro-

cesses is introduced in Section 5. This concept is wider than the concept of Lévy

processes but, under a slight restriction, narrower than that of infinitely divisible

processes. We show that there exists a temporally selfdecomposable non-Lévy pro-

cess whose one-dimensional marginals coincide with those of a Lévy process.

The second purpose of the paper is to discuss time change. Time change of

stochastic processes is a topic of considerable current interest. This is especially so

for cases where the stochastic process, that is being time-changed, is a Lévy pro-

cess. We shall generally refer to stochastic processes that serve to change time by

the term chronometers and processes that are to be time-changed as base processes.

(Bochner’s) subordination, i.e. where the chronometer is a Lévy process indepen-

dent of the base process and the base process is a Lévy process or, more generally,

a time-homogeneous Markov process, is a classical area, initiated by Bochner(11,12);
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some recent references are Bertoin(9,10), Sato(34), and Barndorff-Nielsen, Pedersen and

Sato(4). There is a wide range of Lévy processes, obtained by subordination of Brown-

ian motion, which are of interest as models in mathematical finance. See, for instance,

Eberlein(17), Geman, Madan and Yor(20), Carr, Geman, Madan and Yor(13), Eberlein

and Prause(18), and references given there. Time-changed Lévy processes where the

chronometers are more general than subordinators, being for instance continuous and

in the form of the integral of some volatility process, play a major role in modelling

in finance, see for instance Barndorff-Nielsen and Shephard(5), Barndorff-Nielsen,

Nicolato and Shephard(3), Carr, Geman, Madan and Yor(14), Cont and Tankov(16),

Barndorff-Nielsen and Shephard(7), and references given there. In most of the work

referred to above the chronometer is assumed to be independent of the base process.

Furthermore, the latter process is a Lévy process and the chronometer is an infin-

itely divisible process. We discuss time change of stochastic process in the last two

sections. Section 6 is for a study of chronometers. Section 7 contains a main result

on inheritance of infinite divisibility under time change when base processes are Lévy

processes.

Note that there is another type of time change which is frequently used in the

theory of Markov processes. In this type of time change, the base process is a time-

homogeneous strong Markov process and the chronometer is determined by the base

process as the inverse of a nonnegative continuous additive functional of the base

process. This situation is quite different from that of the subordination, where the

independence of chronometer and base process is essential. A well-known example is

construction of all one-dimensional regular diffusion processes from Brownian motion

by scale change and time change; see Itô and McKean(22). The time change we work

on in this paper does not include this type.

Finally, we give reference to some other recent work on time change that con-

siders aspects different from those of the present paper. It is a question of some

special interest to what extent information on the chronometer can be obtained from

observing the time-changed process only. This question is considered for Brownian

subordination in Geman, Madan and Yor(21) and their work has been extended by

Winkel(37) to time change of Lévy processes with more general chronometers. For

some discussions of time change in quantum physics and in turbulence see Chung

and Zambrini(15) and Barndorff-Nielsen, Blæsild and Schmiegel(2), respectively. Time

change in a broad mathematical sense is treated in Barndorff-Nielsen and Shiryaev(8).

2. Some notation and terminology

Lévy processes, additive processes, and H-selfsimilar (i. e. selfsimilar with expo-

nent H > 0) processes in this paper are in the sense of Sato(34). As usual N, Z, Q, R,
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and C are the sets of positive integers, integers, rational numbers, real numbers, and

complex numbers, respectively; Rd is the d-dimensional Euclidean space; elements

of Rd are column d-vectors; the canonical inner product and norm are denoted by

〈x, y〉 and |x| for x, y ∈ Rd; B(Rd) is the class of Borel sets in Rd. A cone K in Rd is

a non-empty closed convex set which is closed under multiplication by nonnegative

reals, contains no straight line through 0, and such that K 6= {0}. R+ = [0,∞),

Rd
+ = [0,∞)d, Z+ = Z ∩ R+, and Q+ = Q ∩ R+.

The distribution of an Rd-valued random variable X is denoted by L(X). Fur-

thermore, µ̂(z) is the characteristic function of a distribution µ and Cµ(z) is the

cumulant function of µ for which µ̂(z) 6= 0 for all z, that is, the continuous function

with Cµ(0) = 0 such that µ̂(z) = exp(Cµ(z)). When µ = L(X), we also write this as

CX(z). The support of µ is denoted by Supp(µ).

For two random variables X and Y , X
d
= Y means that X and Y have a common

distribution. For two stochastic processes X = {Xt} and Y = {Yt}, X
d
= Y or

{Xt} d
= {Yt} means that X and Y have a common system of finite-dimensional

marginals.

Let 0 < α 6 2. A distribution µ on Rd is called strictly α-stable if µ is infinitely

divisible and, for any c ∈ (0,∞), µ̂(z)c = µ̂(c1/αz); µ is called α-stable if µ is infinitely

divisible and, for any c ∈ (0,∞), there is γc ∈ Rd such that µ̂(z)c = µ̂(c1/αz)ei〈γc,z〉.
Denote by L0(Rd) the class of all selfdecomposable distributions on Rd. That is,

µ ∈ L0(Rd) if and only if µ is a distribution on Rd such that, for any c ∈ (0, 1), there

is a distribution ρ(c) satisfying

µ̂(z) = µ̂(cz)ρ̂(c)(z), z ∈ Rd. (2.1)

If µ is selfdecomposable, then µ is infinitely divisible and, for each c, ρ(c) is unique

and infinitely divisible.

Let m ∈ N. Denote by Lm(Rd) the class of µ ∈ L0(Rd) such that, for any

c ∈ (0, 1), (2.1) holds with some ρ(c) ∈ Lm−1(Rd). Denote L∞(Rd) =
⋂

06m<∞ Lm(Rd).

For m ∈ N∪{∞}, a distribution µ ∈ Lm(Rd) is said to be of class Lm. As in Maejima

and Sato(25) and Sato(35), a process X = {Xt : t > 0} on Rd is called a semi-Lévy

process if it is an additive process and if there is p > 0 such that Xt−Xs
d
= Xt+p−Xs+p

for all 0 6 s 6 t.

Let T be the family of all non-empty finite subsets of R+. Denote by #τ the

cardinality of τ . For a stochastic process X = {Xt : t > 0} on Rd and τ = {t1, ..., tn} ∈
T with #τ = n, denote Xτ = {Xt : t ∈ τ} = {Xtj : j = 1, . . . , n}. For K ⊂ Rd and

τ ∈ T, denote Kτ = {x = (xt)t∈τ : xt ∈ K for all t ∈ τ}. Similarly, KR+ = {x =

(xt)t∈R+ : xt ∈ K for all t ∈ R+}. For a > 0 and τ = {t1, ..., tn} ∈ T with #τ = n, we

use the notation aτ = {at1, ..., atn}.
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3. Infinite divisibility and selfdecomposability of processes

We discuss infinite divisibility, selfdecomposability, class Lm property, and sta-

bility of stochastic processes and their weak versions.

Definition 3.1. A stochastic process X = {Xt : t > 0} on Rd is infinitely divisible

(resp. selfdecomposable; resp. of class Lm) if all finite-dimensional marginals of X are

infinitely divisible (resp. selfdecomposable; resp. of class Lm), that is, for any choice

of τ ∈ T, L(Xτ ) is an infinitely divisible (resp. selfdecomposable; resp. of class Lm)

distribution on the ((#τ)d)-dimensional Euclidean space R(#τ)d.

Obviously a Lévy process or, more generally, an additive process on Rd is an

infinitely divisible process.

Definition 3.2. A stochastic process X = {Xt : t > 0} on Rd is weakly infinitely

divisible (resp. weakly selfdecomposable; resp. weakly of class Lm) if, for any choice

of τ = {t1, . . . , tn} ∈ T and for any a1, . . . , an ∈ R,
∑n

j=1 ajXtj is infinitely divisible

(resp. selfdecomposable; resp. of class Lm).

These “weak” concepts are strictly weaker than the original concepts. See Propo-

sition 3.12.

Remark 3.3. Let us call a function f(t) on [0,∞) a step function if, for some

0 = t0 < t1 < · · · < tn < ∞ and a1, . . . , an ∈ R, f(t) =
∑n

j=1 aj1(tj−1,tj ](t). Let

X = {Xt : t > 0} be a stochastic process on Rd. For any step function of the form

above we write

f ·X =

∫ ∞

0

f(t)dXt =
n∑

j=1

aj(Xtj −Xtj−1
).

Assume that X0 = 0 a.s. Then X is weakly infinitely divisible (resp. weakly selfde-

composable; resp. weakly of class Lm) if and only if, for any step function f , f ·X is

infinitely divisible (resp. selfdecomposable; resp. of class Lm ).

We proceed to develop generalizations to Rd of some of the results of Maruyama(28).

Let k ∈ N (usually k = nd with n ∈ N) and let a(x) = (x∨(−1))∧1 for x ∈ R. For

any infinitely divisible distribution µ on Rk, we sometimes use the Lévy–Khintchine

representation of the form

Cµ(z) = −1

2
〈z, Az〉+

∫

Rk

(
ei〈z,x〉 − 1− i

k∑
j=1

a(xj)zj

)
ν(dx) + i〈γ, z〉 (3.1)

for z = (zj)16j6k ∈ Rk, where x = (xj)16j6k, A is a k × k symmetric nonnegative-

definite matrix, ν is a measure (Lévy measure) on Rk satisfying ν({0}) = 0 and∫
Rk(1 ∧ |x|2)ν(dx) < ∞, and γ ∈ Rk. The triplet of A, ν, and γ is denoted by

(A, ν, γ)a.
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Let K be a cone in Rk. A distribution µ is infinitely divisible and satisfies

Supp(µ) ⊂ K if and only if

Cµ(z) =

∫

K

(ei〈z,x〉 − 1)ν(dx) + i〈γ0, z〉 (3.2)

for z ∈ Rk, where ν is a measure (Lévy measure) on Rk satisfying Supp(ν) ⊂ K,

ν({0}) = 0, and
∫

K
(1 ∧ |x|)ν(dx) < ∞, and γ0 ∈ K ; γ0 is called the drift (see

Skorohod(36) or Sato(34) E22.11). In this case we say that µ has triplet (0, ν, γ0)0. It

follows from (3.2) that
∫

Rk

e−〈z,x〉µ(dx) = exp

[∫

K

(e−〈z,x〉 − 1)ν(dx)− 〈γ0, z〉
]

(3.3)

for z ∈ Ck satisfying Re 〈z, x〉 > 0 for all x ∈ K (see Sato(34) Theorem 25.17 or

Pedersen and Sato(29)); this fact will be used in Section 7. Here we are using 〈z, x〉 =

〈x, z〉 =
∑k

j=1 zjxj even for z = (zj)16j6k ∈ Ck.

For τ, τ ′ ∈ T satisfying τ ⊂ τ ′, let fττ ′ be the ordinary projection from (Rd)τ ′

onto (Rd)τ ; fττ is the identity map from (Rd)τ onto itself. For τ ∈ T, let fτR+ be the

ordinary projection from (Rd)R+ onto (Rd)τ . Thus, Xτ = fτR+X for any stochastic

process X = {Xt : t > 0} on Rd and τ ∈ T.

Theorem 3.4. Let X = {Xt : t > 0} be an infinitely divisible process on Rd. Then

there are ν = {ντ : τ ∈ T}, A = (At,p,u,q)t,u∈R+, p,q=1,...,d, and γ ∈ (Rd)R+ such that the

following are satisfied for all τ ∈ T:

(a) ντ is a measure on (Rd)τ with ν({0}) = 0 and
∫
(Rd)τ (1 ∧ |x|2)ντ (dx) < ∞;

(b) if B ∈ B((Rd)τ ) and 0 6∈ B, then ντ (B) = ντ ′(f
−1
ττ ′(B)) for any τ ′ ∈ T with

τ ⊂ τ ′;
(c) the restriction Aτ = (At,p,u,q)t,u∈τ, p,q=1,...,d of A to τ is a symmetric, nonnegative-

definite (#τ)d× (#τ)d matrix;

(d) Xτ has the triplet (Aτ , ντ , γτ )a, where γτ = fτR+γ.

Conversely, for any ν,A, γ satisfying (a), (b), and (c) for all τ ∈ T, there exists

an infinitely divisible process X on Rd satisfying (d) for all τ ∈ T.

Theorem 3.4 is a reformulation and Rd-generalization of Theorem 1 (and the

remark following it) of Maruyama(28), who treated only the case d = 1 and constructed

a ‘big’ Lévy measure on RR+ .

Outline of the proof of Theorem 3.4. Let X be an infinitely divisible process on

Rd and let (Aτ , ντ , γτ )a be the triplet of Xτ based on a. We represent x ∈ (Rd)τ as

x = (xt)t∈τ = ((xt,j)16j6d)t∈τ . Let τ ⊂ τ ′. Then, for z ∈ (Rd)τ ,

CXτ (z) = Cfττ ′Xτ ′ (z) = CXτ ′ (z
′),
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where z′ is defined by z as

z′ ∈ (Rd)τ ′ , fττ ′z
′ = z, f(τ ′\τ),τ ′z

′ = 0. (3.4)

We have

CXτ ′ (z
′) = −1

2
〈z′, Aτ ′z

′〉+ I + i〈γτ ′ , z
′〉,

where the second term in the right-hand side is as follows:

I =

∫

(Rd)τ ′

[
ei〈z′,x〉 − 1− i

∑

t∈τ ′

d∑
j=1

a(xt,j)z
′
t,j

]
ντ ′(dx)

=

∫

(Rd)τ ′

[
ei〈z,fττ ′x〉 − 1− i

∑
t∈τ

d∑
j=1

a(xt,j)zt,j

]
ντ ′(dx)

=

∫

(Rd)τ

[
ei〈z,x〉 − 1− i

∑
t∈τ

d∑
j=1

a(xt,j)zt,j

]
(ντ ′f

−1
ττ ′)(dx).

Hence (a), (b), and (c) are satisfied and γτ = fττ ′γτ ′ . (The frequently used Lévy–

Khintchine representations, different from (3.1), do not allow such a manipulation

as above.) The converse part of the theorem is proved by applying Kolmogorov’s

extension theorem.

Similarly we can prove the following.

Theorem 3.5. Let K be a cone in Rd. Let X = {Xt : t > 0} be an infinitely divisible

process on Rd. Assume that

P (Xτ ∈ Kτ ) = 1 for τ ∈ T. (3.5)

Then there are ν = {ντ : τ ∈ T} and γ0 ∈ KR+ such that the following are satisfied

for all τ ∈ T:

(a) ντ is a measure on Kτ with ν({0}) = 0 and
∫

Kτ (1 ∧ |x|)ντ (dx) < ∞;

(b) if B ∈ B((Rd)τ ) and 0 6∈ B, then ντ (B) = ντ ′(f
−1
ττ ′(B)) for any τ ′ ∈ T with

τ ⊂ τ ′;
(c) Xτ has the triplet (0, ντ , γ

0
τ )0, where γ0

τ = fτR+γ0.

Conversely, for any ν and γ0 satisfying (a) and (b) for all τ ∈ T, there exists an

infinitely divisible process X on Rd satisfying (3.5) and (c) for all τ ∈ T.

Let us give equivalent conditions in terms of stochastic processes for infinitely

divisibility, selfdecomposability, and the Lm property of stochastic processes.

Theorem 3.6. A stochastic process X = {Xt : t > 0} on Rd is infinitely divisible if

and only if, for each k ∈ N, there are independent, identically distributed stochastic

processes X(k,1), . . . , X(k,k) on Rd such that

X
d
= X(k,1) + · · ·+ X(k,k). (3.6)
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If X is infinitely divisible, then the law of X(k,1) is uniquely determined by the law of X

and k, and the process X(k,1) is infinitely divisible. If X is furthermore stochastically

continuous, then X(k,1) is also stochastically continuous.

Proof. The “if” part. For any τ ∈ T and k,

L(Xτ ) = L(X(k,1)
τ + · · ·+ X(k,k)

τ ) = L(X(k,1)
τ )k∗.

Hence L(Xτ ) is infinitely divisible.

The “only if” part. The infinitely divisible process X induces A, ν = {ντ : τ ∈ T},
and γ as in Theorem 3.4. Let

A(k) = k−1A, ν(k)
τ = k−1ντ , γ(k) = k−1γ.

Then A(k), ν(k) = {ν(k)
τ : τ ∈ T}, and γ(k) satisfy (a), (b), and (c) for all τ ∈ T. Hence

there is an infinitely divisible process X(k) such that, for any τ ∈ T, X
(k)
τ has triplet

(A
(k)
τ , ν

(k)
τ , γ

(k)
τ )a. Let X(k,1), . . . , X(k,k) be independent copies of X(k). Then we have

(3.6).

Uniqueness. Since any infinitely divisible distribution has a unique k th convolu-

tion root, L(X
(k)
τ ) is uniquely determined by L(Xτ ) and k. It is infinitely divisible.

Stochastic continuity. X is stochastically continuous if and only if, for any t > 0,

L(Xs − Xt) → δ0 as s → t, that is, Eei〈z,Xs−Xt〉 → 1, z ∈ Rd, as s → t. If an

infinitely divisible process X is stochastically continuous, then X(k,1) is stochastically

continuous for each k, because

E exp(i〈z,Xs −Xt〉) = E exp

(
i

k∑

l=1

〈z, X(k,l)
s −X

(k,l)
t 〉

)

=
(
E exp(i〈z, X(k,1)

s −X
(k,1)
t 〉)

)k

.

This completes the proof. ¤

Theorem 3.7. A stochastic process X = {Xt : t > 0} on Rd is selfdecomposable if

and only if, for every c ∈ (0, 1),

X
d
= cX ′ + U (c), (3.7)

where X ′ = {X ′
t : t > 0} is a copy of X, U (c) = {U (c)

t : t > 0} is a stochastic process

on Rd, and X ′ and U (c) are independent. The law of U (c) is uniquely determined by

c and the law of X. The process U (c) is infinitely divisible.

Proof. Obviously, the existence of independent X ′ and U (c) satisfying (3.7) implies

that X is selfdecomposable. Conversely, suppose that X is selfdecomposable. Let

c ∈ (0, 1). For every τ ∈ T, denote µτ = L(Xτ ). We have

µ̂τ (z) = µ̂τ (cz)ρ̂
(c)
τ (z), z ∈ (Rd)τ , (3.8)
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with some distribution ρ
(c)
τ on (Rd)τ . To show the consistency of the system {ρ(c)

τ : τ ∈
T}, let τ, τ ′ ∈ T with τ ⊂ τ ′. We claim that

ρ(c)
τ (B) = ρ

(c)
τ ′ (f

−1
ττ ′(B)), B ∈ B((Rd)τ ). (3.9)

This is equivalent to

ρ̂
(c)
τ (z) = ρ̂

(c)
τ ′ (z

′), (3.10)

where z and z′ are related by (3.4). Compare (3.8) with µ̂τ ′(z
′) = µ̂τ ′(cz

′)ρ̂(c)
τ ′ (z

′),
z′ ∈ (Rd)τ ′ and note that (3.4) implies µ̂τ (z) = µ̂τ ′(z

′) and µ̂τ (cz) = µ̂τ ′(cz
′).

Then we have ρ̂
(c)
τ (z) = ρ̂

(c)
τ ′ (z

′). Therefore we get (3.10) and consequently (3.9).

By Kolmogorov’s extension theorem there is a stochastic process U (c) such that

L(U
(c)
τ ) = ρ

(c)
τ . Construct X ′ so that X ′ and U (c) are independent and X ′ d

= X.

Then it follows from (3.8) that X
d
= cX ′ + U (c). Since µτ is infinitely divisible,

the value of µ̂τ is non-zero. Thus ρ
(c)
τ is uniquely determined by (3.8). See Sato(34)

Proposition 15.5 for the infinite divisibility of ρ
(c)
τ . ¤

Theorem 3.8. Let X be a selfdecomposable process on Rd. If X is an additive (resp.

Lévy) process in law, then, for every c ∈ (0, 1), the process U (c) in Theorem 3.7 is an

additive (resp. Lévy) process in law.

Here an additive (or Lévy) process in law is in the sense of Sato(34). Any additive

(resp. Lévy) process in law on Rd has an additive (resp. Lévy) process modification.

Proof of theorem. We have

Xτ
d
= cX ′

τ + U (c)
τ (3.11)

for each τ ∈ T, where X ′ and U (c) are independent and X ′ d
= X. As s ↑ t or t ↓ s,

E exp(i〈z, Xt −Xs〉) → 1. Since

E exp(i〈z, Xt −Xs〉) = E exp(i〈z, cX ′
t − cX ′

s〉)E exp(i〈z, U (c)
t − U (c)

s 〉),
it follows that E exp(i〈z, U (c)

t − U
(c)
s 〉) → 1. Hence U (c) is stochastically continuous.

We have U
(c)
0 = 0 a. s. since X0 = 0 a. s. Let 0 = t0 < t1 < · · · < tn. Use (3.11) for

τ = {t0, . . . , tn}. Then, for z1, . . . , zn ∈ Rd,

E exp

(
i

n∑
j=1

〈zj, U
(c)
tj − U

(c)
tj−1

〉
)

= E exp

(
i

n∑
j=1

〈zj, Xtj −Xtj−1
〉
)/

E exp

(
i

n∑
j=1

〈zj, cX
′
tj
− cX ′

tj−1
〉
)

=
n∏

j=1

E exp(i〈zj, Xtj −Xtj−1
〉)

/
n∏

j=1

E exp(i〈zj, cX
′
tj
− cX ′

tj−1
〉)
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=
n∏

j=1

E exp(i〈zj, U
(c)
tj − U

(c)
tj−1

〉).

Hence U (c) as independent increments. This shows that U (c) is an additive process in

law. If X is a Lévy process in law, then

E exp(i〈z, U (c)
t − U (c)

s 〉) = E exp(i〈z, Xt −Xs〉) /E exp(i〈z, cX ′
t − cX ′

s〉)
= E exp(i〈z,Xt−s〉)

/
E exp(i〈z, cX ′

t−s〉) = E exp(i〈z, U (c)
t−s〉)

and hence U (c) is a Lévy process in law. ¤

Theorem 3.9. Let X be a selfdecomposable process on Rd and let H > 0. Then X

is H-selfsimilar if and only if, for every c ∈ (0, 1), the process U (c) in Theorem 3.7 is

H-selfsimilar.

Proof. Suppose that X is H-selfsimilar. Then Xaτ
d
= aHXτ for any a > 0 and

τ ∈ T. It follows from (3.11) that

E exp(i〈z, U (c)
aτ 〉) = E exp(i〈z, Xaτ 〉) /E exp(i〈z, cX ′

aτ 〉)
= E exp(i〈z, aHXτ 〉)

/
E exp(i〈z, caHX ′

τ 〉) = E exp(i〈z, aHU (c)
τ 〉).

Hence U (c) is H-selfsimilar. Conversely, if U (c) is H-selfsimilar for every c ∈ (0, 1),

then, letting c ↓ 0 in E exp(i〈z, U (c)
aτ 〉) = E exp(i〈z, aHU

(c)
τ 〉), we get E exp(i〈z,Xaτ 〉) =

E exp(i〈z, aHXτ 〉). Note that, for any τ ∈ T,

E exp(i〈z, U (c)
τ 〉) = E exp(i〈z, Xτ 〉) /E exp(i〈z, cX ′

τ 〉) → E exp(i〈z, Xτ 〉)
as c ↓ 0. ¤

Example 3.10. (An application of Theorem 3.7.) Let X = {Xt} be a selfdecom-

posable and H-selfsimilar additive process on R. Let a ∈ (0, 1) ∪ (1,∞). Define

Yt = Xt + Xat.

Then Y = {Yt} is a selfdecomposable and H-selfsimilar process, but Y is not an

additive process in general. Indeed, let X ′ and U (c) be the processes in Theorem 3.7.

Then

{Xt + Xat} d
= {cX ′

t + cX ′
at + U

(c)
t + U

(c)
at },

and we see that Y is selfdecomposable. For any b > 0, {Xbt} d
= {bHXt}. Hence

{Xbt+Xabt} d
= {bHXt+bHXat}, that is, Y is H-selfsimilar. Now assume that E|Xt|2 <

∞, EXt = 0, and E(Xt −Xs)
2 6= 0 for 0 6 s < t. Then E|Yt|2 < ∞ and EYt = 0. In

order to show that Y is not an additive process, it suffices to check E(Yt − Ys)Ys 6= 0

for 0 < s < t. We have

(Yt − Ys)Ys = (Xt −Xs)Xs + (Xat −Xas)Xas + (Xt −Xs)Xas + (Xat −Xas)Xs.

9



If a > 1, then the third term has nonzero mean but the other terms have zero mean.

If 0 < a < 1, then the fourth term has nonzero mean but the other terms have zero

mean.

Theorem 3.11. Let m ∈ N ∪ {∞}. A stochastic process X = {Xt : t > 0} on Rd is

of class Lm if and only if, for every c ∈ (0, 1),

X
d
= cX ′ + U (c), (3.12)

where X ′ is a copy of X, U (c) is a process of class Lm−1, and X ′ and U (c) are inde-

pendent. Here we understand m− 1 = ∞ for m = ∞.

Proof. Assume that X is of class Lm. Then, by Theorem 3.7, (3.12) is true with

some infinitely divisible process U (c). For any τ ∈ T, Xτ
d
= cX ′

τ + U
(c)
τ and X ′

τ and

U
(c)
τ are independent. It follows that L(U

(c)
τ ) ∈ Lm−1. Thus U (c) is of class Lm−1.

The converse is proved similarly. ¤

Proposition 3.12. Let m ∈ N. If a stochastic process X = {Xt : t > 0} on Rd

is infinitely divisible (resp. selfdecomposable; resp. of class Lm), then it is weakly

infinitely divisible (resp. weakly selfdecomposable; resp. weakly of class Lm). But the

converse is not true.

Proof. The first assertion follows from the fact that if L((Xtj)16j6n) is infinitely

divisible (resp. selfdecomposable; resp. of class Lm), then L(
∑n

j=1 ajXtj) is infinitely

divisible (resp. selfdecomposable; resp. of class Lm). This is a special case of Sato(34)

Proposition 11.10 (resp. Maejima, Sato and Watanabe(26) Lemma 1). The last as-

sertion follows from Sato(34) E12.4 (resp. Sato(33) Theorem 1.1, or Maejima, Suzuki

and Tamura(27) Theorem 1). Indeed, let d = 1, n > 2, and let Z1, . . . , Zn be such

that L((Zj)16j6n) is not infinitely divisible (resp. not selfdecomposable; resp. not of

class Lm) but that all linear combinations of Z1, . . . , Zn are infinitely divisible (resp.

selfdecomposable; resp. of class Lm). Define X = {Xt : t > 0} as X0 = 0, Xj = Zj

for j = 1, . . . , n,

Xt = (j + 1− t)Zj + (t− j)Zj+1 for j 6 t 6 j + 1 (j = 1, . . . , n),

and Xt = Zn for t > n. Then X is weakly infinitely divisible (resp. weakly selfdecom-

posable; resp. weakly of class Lm) but not infinitely divisible (resp. not selfdecompos-

able; resp. not of class Lm). ¤
In spite of the proposition above, Lévy processes or, more generally, additive

processes have the following property.

Theorem 3.13. Suppose that X = {Xt : t > 0} is an additive process on Rd. Let

m ∈ N ∪ {0,∞}. Then the following are equivalent:

(a) X is of class Lm;

10



(b) X is weakly of class Lm;

(c) L(Xt −Xs) ∈ Lm(Rd) for all 0 6 s < t.

Proof. See Theorem 1 of Maejima, Sato and Watanabe(26). It treats selfsimilar

additive processes on Rd. But the proof of the equivalence of (a), (b), and (c) does

not use the selfsimilarity. ¤

Remark 3.14. If X is a selfsimilar additive process on Rd, then (a), (b), (c) are

equivalent to

(d) L(X1) ∈ Lm+1(Rd).

Here we understand m + 1 = ∞ if m = ∞. This is Theorem 1 of Maejima, Sato

and Watanabe(26). If X is a Lévy process on Rd, then, obviously, (c) is equivalent to

L(X1) ∈ Lm(Rd).

Definition 3.15. A stochastic process X = {Xt : t > 0} on Rd is α-stable (resp.

strictly α-stable) with 0 < α 6 2 if all its finite-dimensional marginals are α-stable

(resp. strictly α-stable).

Definition 3.16. A stochastic process X = {Xt : t > 0} on Rd is weakly α-stable

(resp. weakly strictly α-stable) if all finite linear combinations of Xt, t > 0, are α-

stable (resp. strictly α-stable).

Remark 3.17. A stochastic process X on R (that is, d = 1) is α-stable with 1 6
α 6 2 (resp. strictly α-stable with 0 < α 6 2) if and only if X is weakly α-stable

with 1 6 α 6 2 (resp. weakly strictly α-stable with 0 < α 6 2). See Samorodnitsky

and Taqqu(31) Theorem 2.1.5. We do not know whether this is true in the case d > 2;

it seems to us that the “if ” part is not true even when α = 2. If X is an α-stable

process on R with 0 < α < 1, then X is weakly α-stable with the same α. But the

converse is not true; see Samorodnitsky and Taqqu(31) for references.

Definition 3.18. A stochastic process X = {Xt : t > 0} on Rd is said to have finite

log-moment if E log+ |Xt| < ∞ for all t, where log+ u = (log u) ∨ 0. (If L(Xt) is

infinitely divisible, then this condition is equivalent to saying that
∫

log+ |x|νt(dx) <

∞ for all t, where νt is the Lévy measure of L(Xt).)

4. Stationary processes of Ornstein-Uhlenbeck type

In this section, we consider stationary processes of Ornstein-Uhlenbeck type on

Rd (in short, stationary OU process), i.e. the stationary solution of a stochastic dif-

ferential equation of the form

dVt = −λVtdt + dZλt (4.1)

11



where Z, called the background driving Lévy process (BDLP) has finite log-moment

and λ > 0. For all such processes V , the marginal law L(Vt) for each t > 0 is

selfdecomposable and does not depend on λ.

Theorem 4.1. Let V = {Vt : t > 0} be a stationary OU process on Rd. Then V is

an infinitely divisible process.

Proof. To say that V is a stationary OU process satisfying (4.1) is equivalent to

saying that

Vt = e−λtV0 +

∫ t

0

e−λ(t−s)dZλs, t > 0 (4.2)

with additional conditions that V0 and Z are independent and that V0
d
=

∫∞
0

e−λsdZλs.

Recall that
∫∞
0

e−λsdZλs exists if and only if Z has finite log-moment. For any k ∈ N
there exist independent identically distributed Lévy processes {Z(k,l)

λs }, l = 1, 2, ..., k,

with finite log-moment such that Z
d
= Z(k,1) + · · · + Z(k,k). It follows that, for any

τ = {t1, ..., tn} ∈ T,

Vτ
d
=

k∑

l=1

(
e−λtjV

(k.l)
0 +

∫ tj

0

e−λ(tj−s)dZ
(k,l)
λs

)

16j6n

where V
(k,1)
0 , . . . , V

(k,k)
0 , {Z(k,1)

λs }, . . . , {Z(k,k)
λs } are independent and V

(k,l)
0

d
=∫∞

0
e−λsdZ

(k,l)
λs . Thus Vτ is infinitely divisible for any τ ∈ T. ¤

Theorem 4.2. Let V be a stationary OU process on Rd with the BDLP Z. Then the

following three conditions are equivalent:

(a) V is a selfdecomposable process;

(b) Z is a selfdecomposable process;

(c) L(Vt) is of class L1 for each t > 0.

Proof. Let us prove that (b) implies (a). By Theorem 3.8 we see that for each

c ∈ (0, 1) there exists a Lévy process U (c) such that Z
d
= cZ ′ + U (c), where Z ′ is a

copy of Z and Z ′ and U (c) are independent. It follows from (4.2) that

V
d
=

{
e−λtV0 + c

∫ t

0

e−λ(t−s)dZ ′
λs +

∫ t

0

e−λ(t−s)dU
(c)
λs : t > 0

}

where V0, Z ′, and U (c) are independent and V0
d
=

∫∞
0

e−λsdZλs. Repeating the ar-

gument in Sato(34) p. 161, we see that U (c) has finite log-moment. It follows that∫∞
0

e−λsdU
(c)
λs exists. Hence

V
d
=

{
c e−λt

∫ ∞

0

e−λsdZ ′′
λs + e−λt

∫ ∞

0

e−λsdU
(c)′
λs

+c

∫ t

0

e−λ(t−s)dZ ′
λs +

∫ t

0

e−λ(t−s)dU
(c)
λs

}
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where Z ′′, U (c)′, Z ′, and U (c) are independent, Z ′ d
= Z ′′ d

= Z, U (c)′ d
= U (c). It follows

that V is a selfdecomposable process.

The proof that (a) implies (c) is as follows. The process V can be extended to a

stationary process Ṽ = {Ṽt : t ∈ R} such that {Ṽt : t > 0} d
= V . Define Yt = tλṼlog t,

t > 0, and Y0 = 0. Then Y = {Yt : t > 0} is a λ-selfsimilar additive process (see

Jeanblanc, Pitman and Yor(23) or Maejima and Sato(25)). If V is a selfdecomposable

process, then L(Yt − Ys) is selfdecomposable for 0 6 s < t (since we can use L(Yt −
Ys) = L(tλVlog t − sλVlog s) for 1 6 s < t and L(Yt − Ys) = L(c−λ(Yct − Ycs)) for

0 6 s < t and c > 0) and thus L(Yt) is of class L1 for t > 0 by Remark 3.14, and it

follows that L(Vt) is of class L1.

Let us see that (c) implies (b). If L(Vt) is of class L1, then L(Z1) is selfdecom-

posable (for a proof see Rocha-Arteaga and Sato(30) Theorem 46) and consequently

Z is a selfdecomposable process by the last sentence of Remark 3.14. ¤

For examples of laws of class L1, see Akita and Maejima(1).

Proposition 4.3. Suppose that V is a càdlàg process on Rd. Let

Tt =

∫ t

0

Vsds, t > 0. (4.3)

(i) If V is infinitely divisible and for each k ∈ N there are independent, identically

distributed, càdlàg processes V (k,1), . . . , V (k,k) such that V
d
= V (k,1) + · · ·+V (k,k), then

T is an infinitely divisible process on Rd.

(ii) If V is selfdecomposable and for each c ∈ (0, 1) there are independent càdlàg

processes V ′ and U (c) such that V
d
= V ′ and V

d
= cV ′ + U (c), then T is a selfdecom-

posable process on Rd.

Remark 4.4. If V is a stationary OU process, then V satisfies the assumption in

(i). If moreover the background driving Lévy process is selfdecomposable, then V

satisfies the assumption in (ii). This follows from the proofs of Theorems 4.1 and 4.2.

However, we do not know whether X(k,1), . . . , X(k,k) or U (c) in Theorem 3.6 or 3.7 can

always be chosen to be càdlàg when X is càdlàg.

Proof of Proposition 4.3. Since Vs(ω) is càdlàg, it is measurable in (s, ω) and

locally bounded in s for each ω. Thus
∫ t

0
Vs(ω)ds exists and belongs to Rd. In

general, if V and V ′ are càdlàg and V
d
= V ′, then

{∫ t

0

Vsds : t > 0

}
d
=

{∫ t

0

V ′
sds : t > 0

}
.

Now, to see the first assertion, notice that

T
d
= T (k,1) + · · ·+ T (k,k)
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where T
(k,l)
t =

∫ t

0
V

(k,l)
s ds. Similarly for the second assertion. ¤

The reason why we have considered integrals of Vs in (4.3) is the following. If

Z in (4.1) is a subordinator, then V = {Vt : t > 0} is a nonnegative process. In

general, chronometers T of the form (4.3), where V = {Vt(ω) : t > 0} is a nonnegative

stochastic process measurable in (t, ω), are of particular interest in mathematical

finance, especially when V is a volatility process. See Geman, Madan and Yor(21),

Carr, Geman, Madan and Yor(14), Barndorff-Nielsen and Shephard(6), and references

given there. In most cases, V has the interpretation of being the variance process

in a stochastic volatility model for the log price of a financial asset, such as a stock

or an exchange rate. Some often considered examples are the Heston model and the

OU based stochastic volatility models, cf. the above references. Standard examples

of stationary OU processes in mathematical finance are the Gamma-OU process and

the IG-OU process, in which Vt follows a gamma, respectively an inverse Gaussian

distribution.

5. Temporal selfdecomposability of processes

In this section, we introduce a new notion of stochastic processes, which will be

called temporal selfdecomposability. Compared with this concept, the selfdecompos-

ability of stochastic processes in Definition 3.1 can be called spatial selfdecompos-

ability, by the property in Theorem 3.7. The class of temporally selfdecomposable

processes is larger than the class of Lévy processes. On the other hand, under a slight

restriction, temporally selfdecomposable processes are infinitely divisible processes.

The notion of additive processes is also between the notion of Lévy processes and

that of infinitely divisible processes. But, as we will see, additive processes are not

always temporally selfdecomposable, and temporally selfdecomposable processes are

not always additive.

Definition 5.1. A stochastic process X = {Xt : t > 0} on Rd is temporally selfde-

composable if, for each c ∈ (0, 1), there exist independent processes X(c) and U (c) on

Rd such that

X
d
= X(c) + U (c) (5.1)

and X(c) = {X(c)
t : t > 0} d

= {Xct : t > 0}.

Theorem 5.2. A stochastic process {Xt : t > 0} on Rd is temporally selfdecomposable

if and only if, for any τ ∈ T and for any c ∈ (0, 1), there is an R(#τ)d-valued random

variable U (c,τ) such that

Xτ
d
= Xcτ + U (c,τ)

and Xcτ and U (c,τ) are independent.
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Proof. The “only if” part is trivial. For the proof of the “if” part, mimic the

proof of Theorem 3.7. ¤

Let us show that, in the usual case, temporal selfdecomposability implies infinite

divisibility.

Theorem 5.3. Let X = {Xt : t > 0} be a temporally selfdecomposable process on Rd,

stochastically continuous and with X0 = 0 a.s. Then X is infinitely divisible.

Proof. For any τ ∈ T and c ∈ (0, 1) , we have

Xτ
d
= Xcτ + U (c)

τ

where Xcτ and U
(c)
τ in the right-hand side are independent. Let

f(τ, z) = E exp(i〈z, Xτ 〉) and g(c, τ, z) = E exp(i〈z, U (c)
τ 〉)

for z ∈ R(#τ)d. It follows that

f(τ, z) = f(cτ, z)g(c, τ, z). (5.2)

For a = 0 we have not defined aτ (see the last paragraph of Section 2). But, in the

following, we understand that X0τ = 0 a. s. in R(#τ)d, noting that X0 = 0 a. s.

Step 1. Fix τ ∈ T. We claim that f(aτ, z) is continuous as a function of (a, z) ∈
[0,∞)× R(#τ)d. Let (ak, zk) ∈ [0,∞)× R(#τ)d such that (ak, zk) → (a, z) as k →∞.

Let (ak′ , zk′) be a subsequence of (ak, zk). Then

|〈zk′ , Xak′τ 〉 − 〈z, Xaτ 〉| 6 |〈zk′ , Xak′τ −Xaτ 〉|+ |〈zk′ − z, Xaτ 〉|
6 |zk′||Xak′τ −Xaτ |+ |zk′ − z||Xaτ | → 0 a.s.

via a further subsequence (ak′′ , zk′′) of (ak′ , zk′). (Recall that a sequence of random

variables Wk converges in probability to a random variable W if and only if any

subsequence Wk′ of Wk contains a further subsequence Wk′′ that converges a.s. to

W .) Hence 〈zk, Xakτ 〉 → 〈z, Xaτ 〉 in probability. It follows that E exp(iξ〈zk, Xakτ 〉) →
E exp(iξ〈z, Xaτ 〉) for all ξ ∈ R. In particular, f(akτ, zk) → f(aτ, z).

Step 2. We claim that f(aτ, z) 6= 0 for any τ ∈ T, a ∈ [0,∞), and z ∈ R(#τ)d.

Fix τ ∈ T. Suppose that, on the contrary, f(a0τ, z0) = 0 for some a0 ∈ [0,∞) and

z0 ∈ R(#τ)d. If a = 0 or z = 0, then f(aτ, z) = 1. Since f(aτ, z) is continuous with

respect to (a, z) by Step 1, f(aτ, z) 6= 0 in a neighborhood of (0, 0). Hence we can

find (a0, z0) ∈ ([0,∞)×R(#τ)d)\{(0, 0)} such that f(a0τ, z0) = 0 and f(aτ, z) 6= 0 for

all (a, z) ∈ [0,∞)× R(#τ)d satisfying a + |z| < a0 + |z0|. We have a0 > 0 and z0 6= 0.

Since

0 = f(a0τ, z0) = f(ca0τ, z0)g(c, a0τ, z0) for c ∈ (0, 1)
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and since f(ca0τ, z0) 6= 0, we have g(c, a0τ, z0) = 0 for c ∈ (0, 1). Thus, using a

general inequality for characteristic functions (Sato (1999) E 6.11), we get

1 = Re (1− g(c, a0τ, z0)) 6 4 Re (1− g(c, a0τ, z0/2)) = 4 Re

(
1− f(a0τ, z0/2)

f(ca0τ, z0/2)

)
.

The last equality is by (5.2) since f(ca0τ, z0/2) 6= 0. Letting c ↑ 1, we get a contra-

diction. This shows that f(aτ, z) 6= 0 for any a and z.

Step 3. Fix τ ∈ T. Let us show that Xτ is infinitely divisible. For each n let Vn,j,

j = 1, . . . , n, be independent random variables such that Vn,j
d
= U

(j/(j+1))
((j+1)/(n+1))τ . Let

Sn =
∑n

j=1 Vn,j. Use (5.2). Then

E exp i〈z, Sn〉 =
n∏

j=1

g

(
j

j + 1
,
j + 1

n + 1
τ, z

)
=

n∏
j=1

f(((j + 1)/(n + 1))τ, z)

f((j/(n + 1))τ, z)

=
f(τ, z)

f((1/(n + 1))τ, z)
→ f(τ, z)

as n →∞. We claim that {Vn,j : j = 1, . . . , n ; n = 1, 2, . . .} is a null array. This will

prove the infinite divisibility of Xτ by Khintchine’s theorem (Sato(34) Theorem 9.3).

Using Step 2 and (5.2), we have

max
16j6n

∣∣∣∣g
(

j

j + 1
,
j + 1

n + 1
τ, z

)
− 1

∣∣∣∣ = max
16j6n

∣∣∣∣
f(((j + 1)/(n + 1))τ, z)

f((j/(n + 1))τ, z)
− 1

∣∣∣∣ 6 An

Bn

,

where An = max16j6n |f(((j + 1)/(n + 1))τ, z) − f((j/(n + 1))τ, z)| and Bn =

min16j6n |f((j/(n + 1))τ, z)|. For z fixed, Bn is bigger than a positive constant,

since f(aτ, z) is nonzero and continuous in a ∈ [0, 1]; An tends to 0 as n →∞, since

f(aτ, z) is uniformly continuous in a ∈ [0, 1]. Hence the null array property is shown

as in Sato(34) E12.12. ¤

Corollary 5.4. Let X be a process of the type in Theorem 5.3. Then the process

U (c) in (5.1) is determined uniquely in law for each c ∈ (0, 1). Moreover, U (c) is an

infinitely divisible process.

We call U (c) the c-residual process of X. It should not be confused with U (c) in

Theorem 3.7.

Proof of Corollary. Theorem 5.3 shows that the characteristic functions of finite-

dimensional marginals of X do not have zero points. Thus the process U (c) in (5.1)

is uniquely determined in law by X and c. Let us show that, for each τ ∈ T, L(U
(c)
τ )

is infinitely divisible. As in Sato(34), p. 92, we can choose sequences {ml}, {nl} of

integers in such a way that ml < nl, ml → ∞, and ml/nl → c as l → ∞. Let Vnl,j

be as in the proof of Theorem 5.3, and let Wl =
∑ml

j=1 Vnl,j, W̃l =
∑nl

j=ml+1 Vnl,j,
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Snl
= Wl + W̃l. Then, as before,

E exp i〈z, Wl〉 =
f((ml + 1)/(nl + 1))τ, z)

f((1/(nl + 1))τ, z)
.

Hence, as l → ∞, E exp i〈z, Wl〉 → f(cτ, z) and E exp i〈z, Snl
〉 → f(τ, z). It follows

that

E exp i〈z, W̃l〉 → f(τ, z)

f(cτ, z)
= g(c, τ, z) = E exp i〈z, U (c)

τ 〉.

Since {Vnl,j} is a null array, W̃l is a row sum of a null array. Hence L(U
(c)
τ ) is infinitely

divisible. ¤

Remark 5.5. Let X = {Xt} be a temporally selfdecomposable process on Rd and

V an Rd-valued random variable independent of X. Then, as is easily seen, the

process Y = {Yt} defined by Yt = V + Xt is again temporally selfdecomposable.

If the characteristic function of V has a zero point (for example, if V is uniformly

distributed on [0, 1]d), then Y is not an infinitely divisible process. Thus we cannot

dispense with the assumption X0 = 0 a. s. in Theorem 5.3.

Definition 5.6. Let m = 2, 3, .... A stochastic process X = {Xt : t > 0} on Rd is m-

times temporally selfdecomposable if it is temporally selfdecomposable and, for each

c ∈ (0, 1), the c-residual process of X is (m− 1)-times temporally selfdecomposable,

where 1-time temporally selfdecomposable is understood as temporally selfdecompos-

able. When X is m-times temporally selfdecomposable for all m, we call it infinitely

temporally selfdecomposable.

We are now going to show that all Lévy processes are infinitely temporally self-

decomposable.

Theorem 5.7. Let X = {Xt : t > 0} be a Lévy process in law on Rd. Then X is

temporally selfdecomposable. Furthermore, for each c ∈ (0, 1), the c-residual process

U (c) is a Lévy process in law satisfying L(U
(c)
1 ) = L(X1−c), and thus X is infinitely

temporally selfdecomposable.

Proof. We use Theorem 5.2. Let τ = {t1, . . . , tn} with 0 6 t1 < t2 < · · · < tn.

Denote µ = L(X1) and µτ = L(Xτ ). Then, for z = (zj)16j6d, zj ∈ Rd, we have

µ̂τ (z) = E exp(i(〈z1, Xt1〉+ · · ·+ 〈zn, Xtn〉))

= E exp
n∑

j=1

i〈zj + zj+1 + · · ·+ zn, Xtj −Xtj−1
〉

= µ̂(z1 + · · ·+ zn)t1µ̂(z2 + · · ·+ zn)t2−t1µ̂(z3 + · · ·+ zn)t3−t2 · · · µ̂(zn)tn−tn−1 .

where t0 = 0. Thus

µ̂τ (z) = µ̂cτ (z)ρ̂(c,τ)(z),
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where ρ(c,τ)(z) is given by

ρ̂(c,τ)(z) = µ̂(z1 + · · ·+ zn)(1−c)t1µ̂(z2 + · · ·+ zn)(1−c)(t2−t1) · · · µ̂(zn)(1−c)(tn−tn−1).

It follows from this expression that U (c) is a Lévy process in law with L(U
(c)
1 ) =

L(X1−c). The infinite temporal selfdecomposability is obvious, since U (c) is again a

Lévy process and we can repeat the argument. ¤
Remark 5.8. If X is a temporally selfdecomposable process, then for any choice

of 0 < s < t and 0 < c < 1, L(Xct − Xcs) is a convolution factor of L(Xt − Xs),

since Xτ
d
= Xcτ + U

(c)
τ for τ = {s, t} where Xcτ and U

(c)
τ are independent. Using this

fact, we can see that an additive process is not always temporally selfdecomposable.

Furthermore, a semi-Lévy process defined in Section 2, which is a special case of

an additive process, is not always temporally selfdecomposable. Indeed, let X be a

semi-Lévy process on R defined by Xt = Bh(t), where {Bt} is Brownian motion and

h(t) is the continuous function that satisfies h(0) = 0 and, for each n ∈ Z+, h′(t) = 1

for 2n < t < 2n + 1 and h′(t) = ε for 2n + 1 < t < 2n + 2. Assume that 0 < ε < 1/2.

Then L(X1−X1/2) = N(0, 1/2) is not a convolution factor of L(X2−X1) = N(0, ε).

Hence X is not temporally selfdecomposable.

Remark 5.9. Let X be an H-selfsimilar process on Rd. Then X is temporally

selfdecomposable if and only if X is selfdecomposable. To see this, note that Xcτ
d
=

cHXτ for τ ∈ T and c ∈ (0, 1). Thus a selfsimilar additive process X is temporally

selfdecomposable if and only if L(X1) is of class L1 (see Remark 3.14). Similarly,

for fixed m = 2, 3, ...,∞, a selfsimilar additive process X is m-times temporally

selfdecomposable if and only if L(X1) ∈ Lm. For, by Theorems 3.8 and 3.9, the

c-residual process is always selfsimilar additive.

Remark 5.10. A temporally selfdecomposable process is, of course, not necessarily

selfdecomposable. In fact, Lévy processes are temporally selfdecomposable as shown

in Theorem 5.7 but they are not always selfdecomposable. On the other hand, a self-

decomposable process is not necessarily temporally selfdecomposable. The example

of Remark 5.8 is such a process.

Remark 5.11. If X = {Xt : t > 0} is a temporally selfdecomposable, stationary OU

process on Rd, then Xt = γ for all t a. s. with some γ ∈ Rd. More generally, let

X be a stochastically continuous, temporally selfdecomposable, stationary process

on Rd. Then Xt = X0 for all t a. s. Indeed, since Xt
d
= Xct, we get, from (5.1),

E exp i〈z, U (c)
t 〉 = 1 on a neighborhood of z = 0. It follows that U

(c)
t = 0 a. s., and

hence {Xt} d
= {Xct}. Therefore, for any t1, t2, and ε > 0, P (|Xt1 − Xt2| > ε) =

P (|Xct1 − Xct2| > ε) → 0 as c ↓ 0. This means Xt1 = Xt2 a. s. If, moreover, X is a

stationary OU process, then the equation (4.2) with X in place of V shows that X is

independent of itself and hence X0 = const a. s.
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Theorem 5.12. Let V = {Vt : t > 0} be a process of Ornstein-Uhlenbeck type on Rd

(that is, a solution of (4.1)) starting at 0. Then V is not temporally selfdecomposable

except when Vt = (1− e−λt)γ a. s. with some γ ∈ Rd.

Proof. By (4.2) we have Vt =
∫ t

0
e−λ(t−u)dZλu. Here {Zt} is an arbitrary Lévy

process on Rd. Suppose that V is temporally selfdecomposable. Then each component

of V is a one-dimensional temporally selfdecomposable process of Ornstein-Uhlenbeck

type starting at 0. Hence we may and do assume that d = 1. Moreover, we may and

do assume that λ = 1 (consider Vt/λ). Let µ = L(Z1) = µ(A,ν,γ). What we want to

prove is that A = 0 and ν = 0. This will show that Z = tγ and Vt = (1− e−t)γ.

The process V is an infinitely divisible process, as the proof of Theorem 4.1 can be

modified to this situation. Let 0 < s < t. Denote the triplet of
(

Vs

Vt

)
by (Ãs,t, ν̃s,t, γ̃s,t).

Since (
Vs

Vt

)
=

∫ t

0

F (u)dZu with F (u) =

(
1[0,s](u)e−s+u

e−t+u

)
,

we have

Ãs,t =

∫ t

0

F (u)AF (u)′du, ν̃s,t(B) =

∫ t

0

du

∫

R
1B(F (u)x)ν(dx)

for B ∈ B(R2). Here F (u)′ is the transpose of F (u). See Sato (2004). Hence

Ãs,t = A

∫ t

0

(
1[0,s](u)e2(−s+u) 1[0,s](u)e−s−t+2u

1[0,s](u)e−s−t+2u e2(−t+u)

)
du

= 2−1A

(
1− e−2s e−t(es − e−s)

e−t(es − e−s) 1− e−2t

)
.

Let

ρ0,s(C) =

∫ s

0

du

∫

R
1C(eux)ν(dx), ρs,t(C) =

∫ t

s

du

∫

R
1C(eux)ν(dx)

for C ∈ B(R). Then

ν̃s,t(B) =

∫ s

0

du

∫

R
1B

(
e−s+ux

e−t+ux

)
ν(dx) +

∫ t

s

du

∫

R
1B

(
0

e−t+ux

)
ν(dx)

=

∫

R
1B

(
e−sx

e−tx

)
ρ0,s(dx) +

∫

R
1B

(
0

e−tx

)
ρs,t(dx).

Now, for any c ∈ (0, 1), the c-residual process U (c) is infinitely divisible by virtue of

Corollary 5.4. It follows that Ãs,t − Ãcs,ct is nonnegative-definite and ν̃s,t − ν̃cs,ct > 0.

Fix s > 0 and choose c such that 2 − e−2s − e2cs < 0. This is possible because

2− e−2s − e2cs → 2(1− (e−2s + e2s)/2) < 0 as c ↑ 1. Let t →∞. Then

det(Ãs,t − Ãcs,ct)

= 4−1A2[(e−2cs − e−2s)(e−2ct − e−2t)− (e−t(es − e−s)− e−ct(ecs − e−cs))2]

= 4−1A2e−2ct(2− e−2s − e2cs + o(1)),
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which is negative for sufficiently large t, unless A = 0. Thus A must be zero. As to

the Lévy measures, if ν is not identically zero, then the support of ν̃s,t is located on

the union of the two straight lines
{(

e−sx
e−tx

)
: x ∈ R

}
and

{(
0

e−tx

)
: x ∈ R}

, while ν̃cs,ct

has a positive mass on the straight line
{(

e−csx
e−ctx

)
: x ∈ R

}
with the origin deleted,

which contradicts the fact that ν̃s,t − ν̃cs,ct > 0. Thus ν must be zero. ¤

We are going to give a class of temporally selfdecomposable processes, which

do not have independent increments in general. Recall that
∫∞
0

f(s)dZs with Lévy

process {Zt} is defined as the limit in probability of
∫ t

0
f(s)dZs as t → ∞ (Sato(35),

p. 230). We need a lemma.

Lemma 5.13. Suppose that {Zt} is a Lévy process on Rd, {Z ′
t} is an independent copy

of {Zt}, and that f(s) is a locally bounded measurable function such that
∫∞

0
f(s)dZs is

definable. Then, for any c ∈ (0,∞),
∫∞
0

f(s)dZcs is definable and, for any c ∈ (0, 1),
∫ ∞

0

f(s)dZs
d
=

∫ ∞

0

f(s)dZcs +

∫ ∞

0

f(s)dZ ′
(1−c)s.

Proof. Let µ = L(Z1). Since
∫ t2

t1

f(s)dZcs =

∫ ct2

ct1

f(s/c)dZs

by Theorem 4.10 of Sato (2004) and for any z ∈ Rd

CR t2
t1

f(s)dZcs
(z) =

∫ ct2

ct1

Cµ(f(s/c)z)ds = c

∫ t2

t1

Cµ(f(s)z)ds → 0

as t1, t2 →∞, we see that
∫∞
0

f(s)dZcs is definable. Let 0 < c < 1 and let

I =

∫ ∞

0

f(s)dZs, I1 =

∫ ∞

0

f(s)dZcs, I2 =

∫ ∞

0

f(s)dZ ′
(1−c)s.

Then, for z ∈ Rd,

E
[
ei〈z,I1+I2〉] = E

[
ei〈z,I1〉] E

[
ei〈z,I2〉]

= exp

{∫ ∞

0

Cµ(f(s/c)z)ds

}
exp

{∫ ∞

0

Cµ(f(s/(1− c))z)ds

}

= exp

{∫ ∞

0

Cµ(f(s)z)cds +

∫ ∞

0

Cµ(f(s)z)(1− c)ds

}

= exp

{∫ ∞

0

Cµ(f(s)z)ds

}

= E
[
ei〈z,I〉] .

This completes the lemma. ¤
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Theorem 5.14. Suppose that {Zt} is a Lévy process on Rd, f(s) is a locally bounded

measurable function on [0,∞) such that
∫∞
0

f(s)dZs is definable. Then, the process

X = {Xt : t > 0} defined by

Xt =

∫ ∞

0

f(s)dZts (5.3)

is infinitely temporally selfdecomposable.

Note that, if f(s) = 1[0,1](s), then Xt = Zt. Thus the theorem above includes

Theorem 5.7.

Proof of theorem. Definability of Xt is given in Lemma 5.13. Further we have

Xt =

∫ ∞

0

f(s/t)dZs a. s. (5.4)

Let c ∈ (0, 1). We claim that

{Xt : t > 0} d
=

{∫ ∞

0

f(s)dZcts : t > 0

}
+

{∫ ∞

0

f(s)dZ ′
(1−c)ts : t > 0

}
, (5.5)

where {Z ′
t} is an independent copy of {Zt}. For one-dimensional marginals, this

equality in law follows from Lemma 5.13. Let us consider n-dimensional marginals.

Let t1, t2, ..., tn > 0. For z1, z2, ..., zn ∈ Rd, we have, using (5.4) and Lemma 5.13,

E exp

{
i

n∑
j=1

〈zj, Xtj〉
}

= E exp

{
i

∫ ∞

0

n∑
j=1

〈zj, f(s/tj)〉dZs

}

= E exp

{
i

∫ ∞

0

n∑
j=1

〈zj, f(s/tj)〉dZcs

}
E exp

{
i

∫ ∞

0

n∑
j=1

〈zj, f(s/tj)〉dZ ′
(1−c)s

}

= E exp

{
i

n∑
j=1

〈zj,

∫ ∞

0

f(s)dZctjs〉
}

E exp

{
i

n∑
j=1

〈zj,

∫ ∞

0

f(s)dZ ′
(1−c)tjs〉

}
.

This shows (5.5). Therefore X is temporally selfdecomposable and the c-residual

process is of the same type. Hence X is infinitely temporally selfdecomposable. ¤

Remark 5.15. A part of Theorem 5.14 can be generalized as follows. Let Z = {Zt}
be a temporally selfdecomposable process on Rd, that is, for c ∈ (0, 1), {Zt} d

= {Zct}+
{V (c)

t }, where the two processes in the right-hand side are independent. If a function

f(s) on [0,∞) is such that the stochastic integrals
∫∞

0
f(s)dZts and

∫∞
0

f(s/t)dZs are

definable and equal and
∫∞
0

f(s)dV
(c)
ts and

∫∞
0

f(s/t)dV
(c)
s are definable and equal,

then the process X defined as in (5.3) is again temporally selfdecomposable.

Remark 5.16. We study more properties of the process X = {Xt} = {∫∞
0

f(s)dZts}
in Theorem 5.14 when Z is a Lévy process on R with finite second moment. In

the following we assume that f is a continuous, decreasing, integrable, nonnegative

function on [0,∞) with 0 < f(0) < ∞. Then f is also square integrable. A typical
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example of f in our mind is f(s) = e−sα
with α > 0. Let µ = L(Z1) and let m and

v be the mean and variance of µ. The cumulant function Cµ(z) is of class C2 and we

have m = −iC ′
µ(0) and v = −C ′′

µ(0).

(i) We have X0 = 0 a. s. by the definition (5.3). For each t > 0,

CXt(z) =

∫ ∞

0

Cµ(f(s/t)z)ds = t

∫ ∞

0

Cµ(f(s)z)ds.

Hence there exists a Lévy process Y = {Yt} such that Xt
d
= Yt for each t > 0. We

have

EXt = EYt = mt

∫ ∞

0

f(s)ds, Var (Xt) = Var (Yt) = vt

∫ ∞

0

f(s)2ds.

(ii) The covariances are as follows:

Cov (Xt, Xt+u) = vt

∫ ∞

0

f(s)f(ts/(t + u))ds,

Cov (Yt, Yt+u) = vt

∫ ∞

0

f(s)2ds

for t > 0 and u > 0. Hence the correlation coefficients are as follows:

Corr (Xt, Xt+u) =

(
t

t + u

)1/2
∫∞

0
f(s)f(ts/(t + u))ds∫∞

0
f(s)2ds

,

Corr (Yt, Yt+u) =

(
t

t + u

)1/2

for t > 0 and u > 0. We notice that

vt

∫ ∞

0

f(s)2ds 6 Cov (Xt, Xt+u) ↑ vtf(0)

∫ ∞

0

f(s)ds,

1 6 Corr (Xt, Xt+u)

(t/(t + u))1/2
↑ f(0)

∫∞
0

f(s)ds∫∞
0

f(s)2ds

as u →∞ for fixed t and that

t−1Cov (Xt, Xt+u) ↓ v

∫ ∞

0

f(s)2ds,
Corr (Xt, Xt+u)

(t/(t + u))1/2
↓ 1

as t →∞ for fixed u.

(iii) To examine dependency of increments of X, we investigate increments of the

special X with f(s) = e−s. Then the definability condition required in Theorem 5.14

is that Z has finite log-moment (see the proof of Theorem 4.1). Our assumption that

Z has finite second moment is much stronger than this. We have

Cov (Xt, Xt+u) = v(t−1 + (t + u)−1)−1

from the expression in (ii). Thus

Var (Xt+1 −Xt) = v2−1(2t + 1)−1.
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Hence X does not have stationary increments and the variance of the 1-increment of

X tends to 0. By elementary calculations

Cov (Xt+1 −Xt, Xt+u+1 −Xt+u) = v(2t + 1)u−2 + o(u−2),

Corr(Xt+1 −Xt, Xt+u+1 −Xt+u) = 23/2(2t + 1)3/2u−3/2 + o(u−3/2)

as u →∞ for fixed t.

(iv) Assume again that f(s) = e−s. Then, the process X has a continuous

modification and determines the process Z pathwise. To prove this, we first note that

t−1Zt → m as t →∞ a. s. Hence
∫∞

0
e−ts|Zs|ds < ∞ for t > 0 a. s. Thus, using (5.4)

and the integration-by-parts formula in Sato(35), Corollary 4.9, we get

t−1Xt−1 = t−1

∫ ∞

0

e−tsdZs =

∫ ∞

0

e−tsZsds a. s.

for each t > 0. Notice that
∫∞
0

e−tsZsds is continuous in t > 0 and that t
∫∞

0
e−tsZsds =∫∞

0
e−sZs/tds tends to 0 as t →∞. It follows that X = {Xt} has a continuous modi-

fication and, with this modification,

t−1Xt−1 =

∫ ∞

0

e−tsZsds for all t > 0

almost surely. By the uniqueness theorem in Laplace transform theory and by the

càdlàg property of Z, we see that the path t−1Xt−1 , t > 0, determines the path Zs,

s > 0, uniquely.

Remark 5.17. Another type of examples of the infinitely temporally selfdecompos-

able processes in Theorem 5.14 is provided by X1 = {X1
t } and X2 = {X2

t } given

by

X1
t =

∫ ∞

0

log

∣∣∣∣
t− s

s

∣∣∣∣ dZ1
s , X2

t =

∫ ∞

0

log

∣∣∣∣
t + s

s

∣∣∣∣ dZ2
s ,

where Z1 and Z2 are independent, identically distributed, symmetric α-stable Lévy

processes on R with 1 < α 6 2. For t > 0, log |(t ∓ s)/s| has asymptotics ∓t/s as

s →∞ and log(1/s) as s ↓ 0. Hence X1
t and X2

t are definable. Notice that both X1

and X2 are 1/α-selfsimilar. Furthermore, the process X = X1 + X2 is represented as

Xt =

∫ ∞

−∞
log

∣∣∣∣
t− s

s

∣∣∣∣ dZs,

where dZs is defined from Zs = Z1
s for s > 0 and Zs = Z2

−s for s < 0. This X is a 1/α-

selfsimilar symmetric α-stable process with stationary increments, a special case of

the log-fractional stable processes introduced by Kasahara, Maejima, and Vervaat(24).

See Embrechts and Maejima(19), Example 3.6.5.
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6. Chronometers

By a chronometer we mean a real-valued stochastic process T = {Tt : t > 0}
that starts at 0 and is increasing, stochastically continuous, and càdlàg in the sense

that Tt(ω) is càdlàg in t for all ω. It is not assumed to have independent increments.

(In this paper we are using the words increase and decrease in the sense allowing

flatness.)

Suppose we are given a chronometer T and a stochastic process X = {Xt(ω) : t >
0} on Rd, which is càdlàg in the sense that there is Ω1 with P (Ω1) = 1 such that

Xt(ω) is càdlàg for all ω in Ω1. We assume that T and X are independent. Define

Y = X ◦ T

by

Yt(ω) =

{
X(Tt(ω), ω) = XTt(ω)(ω) for ω ∈ Ω1,

0 for ω 6∈ Ω1.

Then Y is a stochastic process. In such a setup we shall refer to X as the base process

and to Y as the time-changed process.

Any increasing Lévy process is a chronometer and such chronometers are known

as subordinators. A chronometer which is an additive process is called an additive

chronometer.

Proposition 6.1. Let T = {Tt : t > 0} be a real-valued infinitely divisible process.

Then the following conditions are equivalent.

(a) For any t1, t2 with 0 6 t1 < t2, P (0 6 Tt1 6 Tt2) = 1.

(b) For any positive integer n and for any τ = {t1, ..., tn} with 0 6 t1 < · · · < tn,

let Aτ and ντ be the Gaussian covariance and Lévy measure of Tτ = (Ttj)16j6n. Then

Aτ = 0,
∫
|x|61

|x| ντ (dx) < ∞, Supp(ντ ) ⊂ Kτ , and the drift γ0
τ is in Kτ where Kτ is

the cone in Rn defined by

Kτ = {(xj)16j6n : 0 6 x1 6 x2 6 · · · 6 xn}. (6.1)

(c) Condition (b) holds for n = 2.

Proof. By a theorem of Skorohod(36) (or Sato(34) E22.11), Conditions (a) and (c)

are equivalent. Condition (a) is equivalent to

(a′) P (0 6 Tt1 6 Tt2 6 · · · 6 Ttn) = 1 if 0 6 t1 < · · · < tn.

By the same theorem, (a′) and (b) are equivalent. ¤

Proposition 6.2. Let T = {Tt : t > 0}, with T0 = 0 a.s., be a real-valued stochastic

process which is stochastically continuous and satisfies Condition (a) of Proposition

6.1. Then there is a chronometer T̃ = {T̃t : t > 0} which is a modification of T .
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Proof. Let

Ω0 = {ω : T0 = 0 and Tt1(ω) 6 Tt2(ω) for all t1, t2 ∈ Q+ with t1 < t2}.
Then P (Ω0) = 1. For all t ∈ R+ define T̃t(ω) = infQ3s>t Ts(ω) on Ω0 and T̃t(ω) = 0

on Ω \ Ω0. Then T̃ has all properties desired. ¤

Theorem 6.3. If T is a selfdecomposable chronometer, then, for any c ∈ (0, 1), there

is an infinitely divisible chronometer S(c) such that

T
d
= cT ′ + S(c), (6.2)

where T ′ and S(c) are independent and T ′ is a copy of T .

Proof. Applying Theorem 3.7 to T , denote by S(c) the process U (c) in that

theorem. Let 0 6 t1 < t2. Denote τ = {t1, t2} and Kτ = {(x1, x2) : 0 6 x1 6 x2}. Let

ντ and ν
(c)
τ be the Lévy measures of Tτ and S

(c)
τ . Then (6.2) implies that

ντ (dx) = ντ (c
−1dx) + ν(c)

τ (dx).

Since, by Proposition 6.1, Supp(ντ ) ⊂ Kτ and
∫
|x|61

|x|ντ (dx) < ∞, it follows that

Supp(ν
(c)
τ ) ⊂ Kτ and

∫
|x|61

|x|ν(c)
τ (dx) < ∞. Hence S(c) has drift γ

0(c)
τ ; (6.2) implies

that

γ0
τ = cγ0

τ + γ0(c)
τ .

Thus γ
0(c)
τ ∈ Kτ . Now, by Propositions 6.1 and 6.2, it follows that a modification of

S(c) is a chronometer. ¤

Remark 6.4. Let T be a temporally selfdecomposable chronometer. Then the state-

ment similar to Theorem 6.3 is not true. That is, the c-residual process U (c) of T

defined right after Corollary 5.4 does not necessarily have a chronometer modification.

For example, let h(t) be the function h(t) = t for 0 6 t 6 1 and h(t) = 1 + (t− 1)/3

for t > 1, and let Tt = h(t). Then T is trivially a temporally selfdecomposable

chronometer and U
(c)
t = h(t)− h(ct). Thus U

(1/2)
1 = 1/2 and U

(1/2)
2 = 1/3.

We add a fact showing that the c-residual process of a temporally selfdecompos-

able chronometer still possesses properties akin to chronometers.

Proposition 6.5. Let T be a temporally selfdecomposable chronometer. Then, for

each c ∈ (0, 1), the c-residual process U (c) is an infinitely divisible process such that

U
(c)
t > 0 a. s. for each t and, for each pair of t1 < t2, there is a nonrandom real

number a
(c)
t1,t2 for which U

(c)
t2 > U

(c)
t1 − a

(c)
t1,t2 a. s.

Proof. By Theorem 5.3 and Corollary 5.4, T and U (c) are both infinitely divisible

and U (c) is unique in law. Denote the triplets of Tt and U
(c)
t by (At, νt, γt) and

(A
(c)
t , ν

(c)
t , γ

(c)
t ). Denote the drift of Tt by γ0

t . Then At = Act +A
(c)
t and νt = νct +ν

(c)
t .

Since At = 0, we have A
(c)
t = 0. We have Supp (ν

(c)
t ) ⊂ [0,∞) and

∫
(0,1]

xν
(c)
t (dx) < ∞,
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since νt has the same properties. Hence, U
(c)
t has drift γ

0(c)
t and we have γ0

t = γ0
ct+γ

0(c)
t .

Since γ0
t and γ0

ct are the left extremes of the supports of Tt and Tct, respectively, and

since Tt > Tct a. s., we see that γ0
t > γ0

ct. Hence γ
0(c)
t > 0. It follows that U

(c)
t > 0

a. s. For 0 < t1 < t2, L(U
(c)
t2 − U

(c)
t1 ) is a convolution factor of L(Tt2 − Tt1) as in

Remark 5.8. Since Tt2−Tt1 > 0 a. s., U
(c)
t2 −U

(c)
t1 has triplet (Ã, ν̃, γ̃) satisfying Ã = 0,

Supp ν̃ ⊂ [0,∞), and
∫
(0,1]

xν̃(dx) < ∞. It follows that U
(c)
t2 − U

(c)
t1 > γ̃ a. s. ¤

Remark 6.6. If T is a chronometer of the integral form in the right-hand side of

(5.3) with Z being a subordinator and f being nonnegative and decreasing, then, for

each c ∈ (0, 1), the c-residual process U (c) of T has an increasing process modification.

This is because the drift of U
(c)
t2 −U

(c)
t1 equals

∫∞
0

(f(s/t2)−f(s/t1))(1−c)ds γ0
1 , which

is nonnegative.

Theorem 6.7. Let m ∈ N ∪ {∞}. If T is a chronometer of class Lm, then, for any

c ∈ (0, 1), there is a chronometer S(c) of class Lm−1 such that

T
d
= cT ′ + S(c),

where T ′ and S(c) are independent and T ′ is a copy of T .

Proof. Combine Theorems 3.11 and 6.3 and notice that the law of S(c) is uniquely

determined by the law of T and c. ¤

Example 6.8. Let {M(B) : B ∈ B0R} be an Rd-valued homogeneous independently

scattered random measure with finite log-moment, where B0R is the class of bounded

Borel sets in R. Then for any H > 0 we can define an H-selfsimilar additive process

T on Rd by

Tt =

{∫ log t

−∞ eHuM(du), t > 0

0, t = 0.

It is known that µ = L(T1) is selfdecomposable and that any selfdecomposable dis-

tribution µ on Rd can appear in this way. The process T is selfdecomposable if and

only if µ is of class L1, as in Remark 3.14. See Sato(32), Maejima and Sato(25), and

Sato(35) for definitions and proofs. If d = 1 and M(B) is nonnegative a.s. for every

B, then T is an H-selfsimilar additive chronometer, and if moreover µ = L(T1) is of

class L1, then T is selfdecomposable.

7. Inheritance properties under time change

In this section, let T = {Tt : t > 0} be a chronometer and X = {Xt : t > 0} a

base process on Rd and suppose that they are independent. Define Y = X ◦ T as in

the second paragraph of Section 6.

26



Theorem 7.1. Assume that X is a Lévy process on Rd and T is infinitely divisible.

Then Y is infinitely divisible.

Proof. Let C(z) = CX1(z), z ∈ Rd. For 0 6 t1 < t2 < · · · < tn and z1, . . . , zn ∈
Rd, we have

E exp{i(〈z1, Yt1〉+ · · ·+ 〈zn, Ytn〉)}
= E exp{i(〈z1 + · · ·+ zn, Yt1〉+ 〈z2 + · · ·+ zn, Yt2 − Yt1〉+ · · ·+ 〈zn, Ytn − Ytn−1〉)}

= E




(
E exp

n∑
j=1

i〈zj + zj+1 + · · ·+ zn, Xsj
−Xsj−1

〉
)

sj=Ttj , j=1,...,n




= E




(
exp

n∑
j=1

(sj − sj−1)C(zj + zj+1 + · · ·+ zn)

)

sj=Ttj , j=1,...,n




= E exp
n∑

j=1

aj(Ttj − Ttj−1
) = E1,

say, where aj = C(zj + zj+1 + · · ·+ zn) and t0 = 0. Let a = (aj)16j6n. Let ν] and γ0
]

be the Lévy measure and the drift of (Ttj − Ttj−1
)16j6n, respectively, and use (3.3),

noting that Re aj 6 0. Then

E1 = exp

[∫

Rn
+

(e〈a,x〉 − 1)ν](dx) + 〈γ0
] , a〉

]
= E2,

say. Denote τ = {t1, . . . , tn} and define Kτ by (6.1). Let h be the mapping from Kτ

onto Rτ
+ defined by

Kτ 3 x = (xj)16j6n 7→ h(x) = (xj − xj−1)16j6n ∈ Rτ
+,

where x0 = 0. Use the Lévy measure ντ and the drift γ0
τ of (Ttj)16j6n as in Theorem

3.5. Since Supp(ντ ) ⊂ Kτ and γ0
τ ∈ Kτ by Proposition 6.1, we see that (Sato(34)

Proposition 11.10)

E2 = exp

[∫

Kτ

(e〈a,h(x)〉 − 1)ντ (dx) + 〈h(γ0
τ ), a〉

]

= exp

[∫

Kτ

(
exp

n∑
j=1

aj(xj − xj−1)− 1

)
ντ (dx) +

n∑
j=1

aj(γ
0
tj
− γ0

tj−1
)

]

= E3,

say. For any k ∈ N, let ν
(k)
τ = k−1ντ and γ0(k) = k−1γ0. Then {ν(k)

τ } and γ0(k) satisfy

(a) and (b) of Theorem 3.5 for all τ ∈ T with Kτ replaced by Rτ
+ and hence there is

an infinitely divisible process T (k) such that, for any τ ∈ T, T
(k)
τ = fτ∞T (k) satisfies

27



P (T
(k)
τ ∈ Rτ

+) = 1 and has triplet (0, ν
(k)
τ , γ

0(k)
τ )0, where γ

0(k)
τ = fτ∞γ0(k). Notice

that Supp(ν
(k)
τ ) ⊂ Kτ and γ

0(k)
τ ∈ Kτ . Now, by Propositions 6.1 and 6.2, there is a

chronometer T̃ (k) which is a modification of T (k). Choose T̃ (k) such that X and T̃ (k)

are independent. Let Y (k) = X ◦ T̃ (k). Then

E3 =

(
exp

[∫

Kτ

(
exp

n∑
j=1

aj(xj − xj−1)− 1

)
ν(k)

τ (dx) +
n∑

j=1

aj(γ
0(k)
tj − γ

0(k)
tj−1

)

])k

=
(
E exp(i(〈z1, Y

(k)
t1 〉+ · · ·+ 〈zn, Y

(k)
tn 〉))

)k

.

Hence Yτ is infinitely divisible and Y is an infinitely divisible process. ¤

Remark 7.2. Theorem 7.1 is not true if X is an additive process. It is not true

even if X is a semi-Lévy process. To see this, let h(t) be a nonrandom continuous

function with h(0) = 0. Then Xt = h(t) can be considered as an additive process. Let

Xt = t2 and let T be a Poisson process. Then Yt = T 2
t . For each t > 0, Supp(T 2

t ) =

{0, 1, 4, 9, . . .}. If T 2
t is infinitely divisible, then its law must be a compound Poisson

distribution with Lévy measure concentrated on N and having a positive mass at 1;

but then the support of T 2
t must equal Z+. Hence, for each t > 0, T 2

t is not infinitely

divisible. For an example of a semi-Lévy process having the same property, let h(t)

be t2 for 0 6 t 6 2, 4 for 2 6 t 6 4, and 4n + h(t − 4n) for 4n 6 t 6 4(n + 1) for

n ∈ N and let Xt = h(t).

Theorem 7.3. Assume that X is a strictly α-stable Lévy process with 0 < α 6 2 on

Rd and T is selfdecomposable. Then Y is selfdecomposable.

Proof. Let c ∈ (0, 1). Use T ′ and S(c) in Theorem 6.3. Let 0 6 t1 < t2 < · · · < tn.

Repeat the argument at the beginning of the proof of Theorem 7.1. Then, with

C(z) = CX1(z),

E exp(i(〈z1, Yt1〉+ · · ·+ 〈zn, Ytn〉))

= E exp
n∑

j=1

C(zj + zj+1 + · · ·+ zn)(Ttj − Ttj−1
) = E1E2,

where

E1 = E exp
n∑

j=1

C(zj + zj+1 + · · ·+ zn)(cT ′
tj
− cT ′

tj−1
),

E2 = E exp
n∑

j=1

C(zj + zj+1 + · · ·+ zn)(S
(c)
tj − S

(c)
tj−1

).
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Now use the strict α-stability of X. Then

E1 = E exp
n∑

j=1

C(c1/α(zj + zj+1 + · · ·+ zn))(T ′
tj
− T ′

tj−1
)

= E exp(ic1/α(〈z1, Yt1〉+ · · ·+ 〈zn, Ytn〉)).
On the other hand, constructing a copy X ′ of X independent of X and S(c) and

letting Y (c) = X ′ ◦ S(c), we have

E2 = E exp(i(〈z1, Y
(c)
t1 〉+ · · ·+ 〈zn, Y

(c)
tn 〉)).

In conclusion,

Y
d
= c1/αY ′ + X ′ ◦ S(c),

where Y ′, X ′, S(c) are independent and Y ′ d
= Y , X ′ d

= X. Since c1/α can be any

number between 0 and 1, this shows that Y is selfdecomposable. ¤

Remark 7.4. Suppose that T is temporally selfdecomposable. Then Y is not nec-

essarily temporally selfdecomposable, even when X is Brownian motion on R. For

example, if h(t) is the function given in Remark 5.8 and if Tt = h(t), then T is tem-

porally selfdecomposable but Y is not. However if, for each c ∈ (0, 1), the c-residual

process of T has an increasing process modification as in the case of Remark 6.6,

then, for any Lévy process X, the process Y is temporally selfdecomposable. The

proof of this fact is similar to that of Theorem 7.1.

Unless X is a strictly stable Lévy process, we cannot get the strong conclusion

like Theorem 7.3, but at least the following is true.

Proposition 7.5. Assume that X is a Lévy process on Rd and T is selfdecomposable.

Then, for every c ∈ (0, 1), there is a process V (c) on Rd such that

{Yt : t > 0} d
= {X(cTt) + V

(c)
t : t > 0} (7.1)

and X, T , and V (c) are independent. Furthermore, in this case, V
(c)
t can be repre-

sented as V
(c)
t = X ′(S(c)

t ), where X ′ d
= X, S(c) is a chronometer such that X, T, X ′,

and S(c) are independent.

Proof. This fact is shown in the proof of Theorem 7.3. ¤

If Tt = t, the property (7.1) is temporal selfdecomposability. Therefore, if Tt = t,

the first half of Proposition 7.5 is that of Theorem 5.7.

Theorem 7.6. Let m ∈ N∪{0,∞}. Assume that X is a strictly α-stable Lévy process

with 0 < α 6 2 on Rd and T is of class Lm. Then Y is of class Lm.
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Proof. This is Theorem 7.3 when m = 0. The proof for general m is by induction,

combining the proof of Theorem 7.3 with Theorem 6.7. The assertion for m = ∞
follows from that for m finite. ¤

The following result reduces to a known property of subordination when T is a

subordinator.

Theorem 7.7. Let m ∈ N∪{0,∞}. Assume that X is a strictly α-stable Lévy process

with 0 < α 6 2 on Rd and that, for each t, L(Tt) ∈ Lm(R) (no assumption on the

multivariate marginals of T ). Then, for each t, L(Yt) ∈ Lm(Rd).

Proof. Let m = 0. Let c ∈ (0, 1). For each t we have the decomposition

Tt
d
= cT ′

t + S
(c)
t ,

where T ′
t and S

(c)
t are independent and S

(c)
t > 0. We can choose S

(c)
t so that X and

S
(c)
t are independent. We have

E exp(i〈z, Yt〉) = E exp(C(z)Tt) = E exp(cC(z)Tt)E exp(C(z)S
(c)
t )

and

E exp(cC(z)Tt) = E exp(C(c1/αz)Tt) = E exp(i〈z, c1/αYt〉),
E exp(C(z)S

(c)
t ) = E exp(i〈z, X(S

(c)
t )〉).

It follows that L(Yt) ∈ L0(Rd). For 1 6 m < ∞, use induction. The assertion for

m = ∞ follows from the case m < ∞. ¤
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