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The class of distributions on R generated by convolutions of I'-distributions and the one
generated by convolutions of mixtures of exponential distributions are generalized to higher

dimensions and denoted by T'(RY) and B(RY). From the Lévy process {Xt(” )} on R?
with distribution p at ¢ = 1, T(u) is defined as the distribution of the stochastic inte-

gral fol log(1 /t)dXt(“ ). This mapping is a generalization of the mapping T introduced by
Barndorff-Nielsen and Thorbjgrnsen in one dimension. It is proved that Y(ID(R?)) =
B(RY) and Y(L(R%)) = T(RY), where ID(R?) and L(R?) are the classes of infinitely divis-
ible distributions and of selfdecomposable distributions on R%, respectively. The relations
with the mapping ® from u to the distribution at each time of the stationary process of

Ornstein—Uhlenbeck type with background driving Lévy process {Xt(” )} are studied. De-
velopments of these results in the context of the nested sequence L,,(R%), m = 0,1, ..., 00,
are presented. Other applications and examples are given.

Keywords: Goldie-Steutel-Bondesson class; infinite divisibility; Lévy measure; Lévy process;
selfdecomposability; stochastic integral; Thorin class

1. INTRODUCTION

For distributions on the positive real line, Thorin (1977a,b) introduced the small-
est class that contains all I'-distributions and that is closed under convolution and
convergence, where convergence of distributions means weak convergence. He called
distributions of this class generalized I'-convolutions. This was in connection to his
proof of infinite divisibility of Pareto and lognormal distributions. In Bondesson’s
monograph (1992) the class is denoted by 7. Subsequently Thorin (1978) considered
the smallest class on the real line R containing all generalized I'-convolutions and
closed under convolution, convergence, and reflection. We denote this class by T'(R).
Based on the work of Goldie (1967) and Steutel (1967,1970), Bondesson (1981) stud-
ied the smallest class containing all mixtures of exponential distributions and closed

under convolution and convergence. He called distributions of this class g.c.m.e.d.



(generalized convolutions of mixtures of exponential distributions). It is similarly
extended to a class on R and we denote the extension by B(R). In Bondesson (1992)
the class T'(R) and the class of g.c.m.e.d. are denoted by 7; and 75, respectively; the
class B(R) should not be confused with the class B there.

We study multi-dimensional analogues of the classes T'(R) and B(R). We define
them as subclasses of the class ID(R?) of infinitely divisible distributions on R?
such that their Lévy measures have radial components having the same property as
the part on R, = [0,00) of the Lévy measures of distributions in 7'(R) and B(R),
respectively. The class T(R?) is included in the class L(R?) of selfdecomposable
distributions on R? but the class B(R?) is not. Precise definitions will be given in
Section 2. The class T'(R%) is duly called the Thorin class, as it is the analogue of T'(R).
Historically, Goldie (1967) proved the infinite divisibility of mixtures of exponential
distributions and Steutel (1967) found the description of their Lévy measures. So it
would be appropriate to call B(RY) the Goldie-Steutel-Bondesson class. We give a
probabilistic characterization of these classes on R? by using a mapping Y defined by
a stochastic integral; Y () is the distribution of fol log(1/t)dX ™, where {X"} is the
Lévy process on R? with distribution y at ¢t = 1. In one dimension this is the mapping
introduced by Barndorff-Nielsen and Thorbjgrnsen (2002a,b, 2004, 2005) in relation
to the Bercovici—Pata bijection between free infinite divisibility and classical infinite
divisibility. We will prove that B(RY) and T(R?) are the images by T of ID(R?)
and L(RY), respectively. We will further investigate the relation with the mapping ®
which is defined for y € IDjog(R?), the subclass of I D(R?) consisting of the ones with
finite log-moment, and which gives the distribution ®(u) of [ e‘tht(” ). Both &Y
and Y@ are defined on 1D, (RY); they coincide and give another stochastic integral
representation of T'(R?). In analogy to the construction of the well-known nested
sequence of subclasses L,,(R?), m = 0,1,...,00, of L(R?) = Ly(R?), we define a new
nested sequence of subclasses T,,(RY), m = 0,1,...,00, beginning with Ty(RY) =
T(R?). Alternatively, the former sequence extended by adding ID(R?) at the top
and the latter sequence extended by adding B(R?) at the top can be generated from
the top members by iterating the mapping ® each time after restriction to I Djoq(R?).
We will show that the latter extended sequence is the image by the mapping T of the
former extended sequence. Further we will describe T, (R?) by specifying the Lévy
measures. A characterization of T(R?) and B(R?) by using elementary I'-variables

and elementary mixed-exponential variables in R?, respectively, will also be given.



2. MAIN RESULTS

For any R?-valued random variable X we denote its distribution by £(X). The
characteristic function and the cumulant function of a distribution x on R? are de-
noted by fi(z) and C)(z), respectively. That is, C\,(2) is a continuous function with
C,(0) = 0 such that fi(z) = exp(C,(z)), z € R% such a function C),(z) exists and is
unique if 7i(z) # 0 for all z € RY. If y = £(X), then C,(2) is also written as Cx(2).

Any Lévy process {Xt(“ )it > 0} on R? uniquely induces an R%valued indepen-
dently scattered random measure {M#(B): B € B[o o)} such that MW([0,t]) =
X" as., where By ) is the class of bounded Borel sets in [0, 00). Let f(t) be a real-
valued measurable function on [0, o), M “-integrable (also called {Xt(“ )}-integrable)
in the sense of Urbanik and Woyczynski (1967) and Rajput and Rosinski (1989) for
d =1 and of Sato (2004) for general d. Then M) (B) = [, f(t)M " (dt) (also writ-
ten as [, f( ()dX ™) is defined a.s. for each B € B[Ooo and {MU#(B): B € Bf, .}
is again an R%valued independently scattered random measure; furthermore, we have
S5 |Cu(f(t)z)]dt < oo and

Crrm(p)(2) = / C.(f(t)z)dt, z € R% (2.1)
B
For B = (a,b), (a,b], [a,b), and [a,b], [; f( ()dX™ coincides a.s.; we write it as
fbf dX" . On [0,00) or (0,00) the stochastic integral of f with respect to X "
is defined as the limit in probability of fo t)dX, W as s — oo and written as
i X" whenever the limit exists. Let

I Dy (RY) = {u € ID(RY): /m|>2 log || u(dr) < oo}

= {,u € ID(RY): / log |z| v'¥(dzx) < oo} :
|z|>2

where v is the Lévy measure of p. It is known (Jurek and Vervaat (1983), Sato
and Yamazato (1983), and Sato (1999)) that [~ e~tdX™ is definable if and only if
o € IDyoe(R?), and that

L(RY) = ®(I Dye(RY), (2.2)

O(p) =L (/Ooo e_tht(“)) . (2.3)

where



The domain of definition of the mapping ® is I Djog(R?) and ® is one-to-one. Another

characterization of ®(1u) is given in relation to the Langevin equation
dY, = dX™ — Y,dt. (2.4)

The equation (2.4) has a stationary solution {V;: ¢ > 0} if and only if u € I Djq(R?).
If u € IDg(RY), then a stationary solution {Y;} is unique, and £(Y;) = ®(u) for all
t > 0. The process {Y;} is called a stationary process of Ornstein—Uhlenbeck type.
For a historical account on the connection of L(R?), ®, and processes of Ornstein—
Uhlenbeck type, see Rocha-Arteaga and Sato (2003) p.54-55. Steutel and van Harn
(1979) should also be added, as they mentioned the possibility of the expression of
Ci(2) for 1 € L(R) in the form equivalent to the right-hand side of (4.1) in Section 4
with some p. For further development and extension, see Maejima and Sato (2003)
and the references therein.

For any Borel set E in R%, the class of Borel subsets of E is denoted by B(E). A
function defined on F is called measurable if it is B(E)-measurable. The unit sphere
in R? is denoted by S = {£ € R?: [¢] = 1}.

We use the Lévy—Khintchine triplet, or simply the triplet, (A, v,v) of u € ID(R?)
in the sense that

Cule) =~ 42) + [

R

d (ei<w> ~1 M) v(dz) +i(y, 2), (2.5)

1+ |z|?

where A is a d x d symmetric nonnegative-definite matrix, v is a measure on R?
called the Lévy measure of p, and v € R%. A measure v is the Lévy measure of some
i € ID(RY) if and only if v({0}) = 0 and [o.(|z|* A 1)v(dz) < co. We sometimes
denote an infinitely divisible distribution p with triplet (A, v,v) by pau). We also
denote the Lévy measure of u by v,

We use the following polar decomposition of Lévy measures.

Lemma 2.1. Let v = v for some p € ID(RY) with 0 < v(R?) < co. Then there
exist a measure A on S with 0 < A(S) < oo and a family {ve: € € S} of measures on
(0,00) such that

ve(B) is measurable in & for each B € B((0,00)), (2.6)
0 < 1¢((0,00)) <00 for each & € S, (2.7)

WB) = [ @) [T 1awtdn) Jor B € BR (o)) (23)



Here X and {v¢} are uniquely determined by v in the following sense: if A\, {ve} and
N, {v¢} both have properties (2.6)~(2.8), then there is a measurable function c(§) on
S such that

0 < ¢(é) < oo, (2.9)
N(dg§) = c(§)A(dS), (2.10)
c(§)vi(dr) = ve(dr)  for X-a.e. £ € S. (2.11)

Rosinski (1990) has the same result, but the uniqueness is not mentioned. Some-
times we call A and v, in Lemma 2.1 the spherical component and the radial component
of v respectively, as they are uniquely determined in the sense written above. The
following description of the Lévy measures of L(R?) is well-known (see Sato (1999),
Theorem 15.10).

Proposition 2.2. Let pn € ID(R?) and let v = v, Then p € L(R?) if and only
if either v = 0 or v # 0 with a polar decomposition (\,ve) such that there is a
nonnegative function ke(r) measurable in & and decreasing, right-continuous in r,
satisfying

ve(dr) = ke(r)r—'dr  for M-a.e. £ € S. (2.12)

We call ke(r) the k-function of yu € L(R?) or of its Lévy measure v, as it is
determined by p A-a.e. up to multiplication of functions of £&. The right-continuous
modification of k¢(e™*) is denoted by he(u) and called the h-function of u € L(R?) or
of its Lévy measure v.

Let us define T(RY) and B(R%).

Definition 2.3. The class T'(R9) is the collection of y € L(RY) with v = v* such
that either v = 0 or v # 0 having k-function k¢(r) completely monotone in r for

A-a.e. &, where A\ is the spherical component of v.

Definition 2.4. The class B(R?) is the collection of p € ID(R?) with v = v*) such
that either v = 0 or v # 0 having polar decomposition (A, v¢) satisfying
ve(dr) = le(r)dr for l-a.e. £ € S, (2.13)
where [¢(7) is measurable in £ and completely monotone in r for M-a.e. &.
We call l¢(r) the I-function of u € B(R?) or of its Lévy measure v. We can prove

that
B(RY) N LRY) 2 T(RY). (2.14)



Except the strictness, this is clear; the strictness will be proved in Section 3.

We introduce a mapping Y.

Proposition 2.5. If f(t) is a function on [0,00) given by f(t) = log(1/t) for 0 <
t <1 and f(t) =0 otherwise, then f(t) is {X\" }-integrable for every p € ID(RY).

Definition 2.6. For any p € ID(R?), define

T(p) =L (/1 log %dXt(“)) . (2.15)

0

We often write YT or ®p for YT(u) or ®(u), respectively. Now we state our main
results on B(R?) and T(R?).

Theorem A. (i) The total image of the mapping Y equals B(RY). That is,
B(R%) = Y(ID(R%)). (2.16)

(ii) Let p € ID(RY) and ji = T and let v = v and v = v'®. Then
v(B) = /OO e*v(s"'B)ds for B € B(R%). (2.17)
If v # 0 and v has polar decoomposition (A, v¢), then a polar decomposition of U is

given by X = X\ and Ve(dr) = E(r)dr with

lNg(r) = /000 sle TS (ds). (2.18)

Theorem B. (i) The image of the class L(R?) by the mapping Y equals T(R?). That
18,

T(R?) = T(L(RY)). (2.19)

(ii) Let p € L(RY) and i = Yp with v = v and v = v . If v # 0 and v has
spherical component X\ and k-function ke(r), then v has spherical component A=

and k-function
ES(T) = / ke(rs™ e *ds = / e_mdkg(u). (2.20)
0 0
Here kg(u) is the right-continuous modification of ke(u™').

In the one-dimensional case (d = 1), (2.19) was discovered by Barndorff-Nielsen
and Thorbjernsen who also, in effect, noted that Y(ID(R)) C B(R), but without be-
ing aware of the connection to the class B(R); see Barndorff-Nielsen and Thorbjgrnsen
(2004, 2005).



In proving Theorems A and B, we will show the following properties of the map-

ping Y.

Proposition 2.7. (i) For any u € ID(RY), fol |C,(z1og(1/t))|dt < oo and

! 1
Cru(z) = /0 C, (z log ;) dt, z € R (2.21)

(ii) The mapping Y is one-to-one from ID(R?) into I D(R?).
(iii) Y (g * po) = Yy * Lo for py, po € ID(RY).
(iv) For p € ID(R?) with triplet (A, v,v), Tu has triplet (A, 7,7) with expressions

A =24, (2.22)
v(B) :/ v(s'B)e *ds for B € B(RY), (2.23)
0
5= +/°O—Sd/ L L V)
¥=" i e Ssds Rdx R TR v(dz
x|x|? /°° e s(1 — s%)
= d ———"ds. 2.24
el s 224

(v) Let pu, € ID(RY) (n=1,2,...). If i, — p, then p € ID(R?) and Yy, — Tp.
Conversely, if T, — i for some distribution [, then it = Y for some u € I D(R?)

and [, — [t
(vi) The mapping Y has the following alternative expressions:
1
1
Tu="L ( / log dXt(“)) : (2.25)
1w
Tpu=L (h{g/ ; dt |, (2.26)

where the limit in (2.26) is almost sure.

For another expression of T(R?), we use the function e;(u) = [ e *s™'ds and
the function ef(¢) inverse to e;(u), that is, ¢t = e;(u) if and only if u = e}(t).
Theorem C. (i) Let pp € ID(R?). Then T € ID1og(RY) if and only if u € 1 Do (R?).
(i) The integral [)° e*{(t)dXt(“) exists if and only if u € ID(RY). If p €
I Do (R?), then
Ty ="Topu=L ( / ej(t)dxt(“)> , (2.27)
0
where @Y = &(Y () and Tou = T (d(p)).
(iii) We have
TR = &(B(RY) N IDye(RY) (2.28)



and

T(RY) = {c < /0 N e;<t)dX§“>) e mlog(m} | (2.29)

Let us recall the definition of selfdecomposability. A distribution 1 on R? is said

to be selfdecomposable, or u € L(R?), if for each b > 1 there is a distribution pl()“ )

such that -
i(2) = b~ 2)py" (2). (2:30)
Note that pl()“ ) is uniquely determined by p and b and that pé“ ler D(R?). We define
Lo(RY) = L(R?) and then, for m = 1,2, ..., define
L(RY) = {pn € LRY: pi" € Ly (R?) for all b > 1}. (2.31)
Let Loo(R?) = Mocmens Lm(R?) and let G(R?) be the class of stable distributions on
R?. Thus we get the nested sequence studied by Urbanik (1972), Sato (1980), and
others:
ID(RY) D Lo(RY) D Li(RY) D Ly(RY) D -+ D Lo (RY) D &(RY). (2.32)
The class Lo (R9) is the smallest class containing &(R?) and being closed under
convolution and convergence.

Corollary to Theorem C. We have
T(RY) = {u € L(RY: p" € B(R?) for all b > 1}. (2.33)

Now we define the classes T, (R?), letting To(R?) = T(R?) and, for m =1,2,. ..,
T (RY = {p € LRY): pi" € T, (RY) for every b > 1}. (2.34)
Let Too(R?) = Nocimene Tn(R?). In this way we get a decreasing sequence
B(R?%) D Ty(RY) D Ty (RY) D Th(RY) o - - D Too(RY) D G(RY). (2.35)
The last inclusion is clear because, for any Gaussian distribution g, ,ol(,“ ) is Gaussian,

and because, for any a-stable distribution p with 0 < o < 2, p € L(R?) with k-

function r=® and thus yu is in T(R?) and has a-stable ,01()”).

Theorem D. The sequence (2.32) is transformed to the sequence (2.35) by the map-
ping Y, that is, (2.16) and

T,n(RY) = Y(L,,(RY))  form=0,1,..., 00, (2.36)
S(RY) = T(S(RY)). (2.37)



Moreover we have

TR S Ly(RY form=0,1,..., (2.38)
Tw(R) = Loo(RY), (2.39)
T (RY) = &(T,,(RY) N I Dye(RY)  form =0,1,...,00, (2.40)

where we understand m + 1 = oo for m = oo.

The relation (2.37) was shown in Barndorff-Nielsen and Thorbjgrnsen (2002b)
for d = 1.
It is known that

L1 (RY) = ®(L,, (RN N I Dyog(RY))  for m=0,1,...,00. (2.41)

The assertion (2.40) is analogous to this. Thus L,,(R%) and T, (R?) are the images of
ID(R?) and B(RY), respectively, by ®™*1 the (m+1) st iteration of ®. A description
of the domain of definition of ®"*! and a stochastic integral representation of ®"*!
are known. See Jurek (1983), Sato and Yamazato (1983), and also Rocha-Arteaga
and Sato (2003) Theorems 46 and 49 and Remark 58"

The Lévy measures of T, (R?) are characterized as follows.

Theorem E. Let m € {0,1,...}. Let u € ID(RY). Then p € T,,(R?) if and only
if p € L(RY) and v = v is either v = 0 or v # 0 having infinitely differentiable
h-function he(u) such that

h(u) >0 for u € R, 0< j < m, and h" (~logr) } (2.42)

1s completely monotone in r > 0, A-a.e. £
where héj) is the jth derivative of he and X is the spherical component of v.

A characterization of B(R?) and T(R?) using mixed-exponential distributions

and I'-distributions is as follows.

Definition 2.8. Call Ux an elementary mized-exponential variable in R? (resp. ele-
mentary T-variable in R?) if x is a nonrandom nonzero vector in R? and U is a real
random variable whose distribution is a mixture of a finite number of exponential

distributions (resp. a real I'-distributed random variable).

Theorem F. The class B(RY) (resp. T(RY)) is the smallest class of distributions on
R? closed under convolution and convergence and containing the distributions of all

elementary mized-exponential variables in RY (resp. of all elementary T-variables in

"n Line 4 of this remark, p,, should be replaced by .



R?). Actually, p is in B(R?) (resp. T(RY)) if and only if there are pi,, n = 1,2,. ..,
with p, — w such that each p, is the distribution of the sum of a finite number
of independent elementary mized-exponential variables in R? (resp. elementary T'-

variables in R?).

Many examples of distributions in T'(R) supported on R, are given in Bondesson
(1992) and Steutel and van Harn (2004). As shown by Bondesson (1992), Theorem
7.3.1, all normal variance mixtures where the law of the variance is a generalized
[-convolution belong to T'(R). (Any such mixture equals the law at time 1 of a
subordination of Brownian motion by a generalized I'-convolution subordinator.) We
also note that if X;,..., X, are independent real random variables with £(X;) in
T(R) (resp. B(R)) for each j, then £(X) € T(R?) (resp. B(R?)) for X = (X;)1¢j<d-

We will prove the results above in the sections that follow. In the final section

we will discuss several examples.

3. PROOF OF THEOREMS A AND B

We prove Theorems A and B on the relationship of the classes B(RY) and T'(R?)
with the mapping T. We also show the relation (2.14), Lemma 2.1, and Propositions
2.5 and 2.7.

Proof of Lemma 2.1. Let ¢ = [,.(|z|* A 1)v(dz) and let N be a random variable
on R? with distribution ¢~ !(|z|> A 1)v(dz). Let R = |N| and Z = N/|N|. Define
AN = L(Z) and )(B) = ¢ [p(r* AN1)T'P(R € dr|Z = £), using the conditional
distribution. Then A\ and {1} satisfy (2.6)-(2.8) with the additional properties that
A(S) =1Tand [[7(r* Al)yg(dr) =1 forall £ € S.

The proof of the uniqueness is as follows. Let A, {v¢} and X', {r;} both satisfy
(2.6)-(2.8). Define a(&) = [;°(r* A 1)ve(dr) and o/ (€) = [77(r* A1)v(dr). By (2.7),
a(§) and d/(€) are positive for all . We have a(¢) < oo for M-a.e. £ and d/(§) < o0
for N-a.e. £, since [ga(§)A(dE) = [y a' ()N (dE) = ¢ < oo. For any B € B(S),

x5 - | (o A tytde) = [ a(@re) = [ (N (ag)
{o: [2|'2€B} B B

Hence \°, )\, and )\ are mutually absolutely continuous. By the uniqueness of the
conditional distribution P(R € dr|E = &), we get ca(§)'ve(dr) = v¢(dr) and
ca' (&) wp(dr) = v(dr) for N-a.e. & Letting c¢(§) = a(§)/d'(€) with appropriate
modification on a set of \%-measure 0, we get (2.9)-(2.11). O

10



Remark 3.1. By the uniqueness of a polar decomposition of v in the sense of Lemma
2.1, the properties of y in Definitions 2.3 and 2.4 of T(R¢) and B(R?) do not depend

on the choice of polar decompositions.

Remark 3.2. By an extension of Bernstein’s theorem to the case with a parameter,
for each p € B(R?) there exists a unique family {Q¢: £ € S} of measures on (0, c0)
such that Q¢(B) is measurable in ¢ for each B € B((0,00)) and

() = /0 " O, (du): (3.1)

see the proof of Lemma 3.3 of Sato (1980) for the details. Here we have used l¢(00) =
0. We have [;(r* A1)le(r)dr = [;° a(u)Q¢(du), where

a(u) = u_3/ rie"dr +ute ™. (3.2)
0
Since [q(|z|* A 1)v(dx) < oo,

/S)\(df) /000 a(u)Qe(du) < oo. (3.3)

Noting that a(u) ~ «™! as v | 0 and a(u) ~ 2u™> as u T oo, we see that (3.3) is

equivalent to
/ A(de) / (™ A u)Qe(du) < 0. (3.4)
S 0

Similarly, for each u € T'(R?) there exists a unique family { R¢: € € S} of measures
on (0,00) such that R¢(B) is measurable in £ for each B € B((0, 00)), and

ke(r) = / e " Re(du). (3.5)
0
This time we have [°(r Ar~")ke(r)dr = [° b(u) Re(du) with

b(u) = u > i re”dr+/ rle"dr. (3.6)

Thus we have
/)\(dg)/ b(u)Re(du) < oo, (3.7)
s 0

which is equivalent to

1/2 0
/S A(dE) ( /0 log %Rg(du) + /1 , u_QR,g(du)> < o0. (3.8)

since b(u) ~ log(1/u) as u | 0 and b(u) ~ u™2 as u | co.

11



Proof of (2.14). The inclusion T(R%) C L(R?) is evident from Proposition 2.2 and
Definition 2.3. If k¢(r) is completely monotone, then so is ke(r)r~!, since the product
of completely monotone functions is completely monotone. Hence T'(R?) C B(R?).

For d = 1, let us construct p € B(R) N L(R) such that p & T(R). Let

k(r)=e ™" —e 01" 472" r>0

with 0 < al < by < ay and let [(r) = k(r)r~t. Then k(r) is not completely monotone,
since k(r) = [~ e ™Q(du) with a signed measure @ such that Q({b1}) < 0. But I(r)

is completely monotone, since

—a1r __ ,—bir —asr b1 e
l(r) = ¢ . ¢ + ¢ . :/ e_”‘du—k/ e "du.

a1 as
Hence the distribution p given by 7i(z) = exp [;°(e”*" — 1)I(r)dr is in B(R) \ T(R)
(u is in fact a mixture of exponential distributions with parameters a; and ay by
Steutel’s theorem; see Sato (1999), Lemma 51.14, or Steutel and van Harn (2004),
Chapter VI, Proposition 3.4). We claim that for some choice of ay, by, and as, k()
is decreasing so that p € L(R). Indeed, let a; =1 —¢, by = 1, and as = 1 + ¢ with
0<e<1 Then k' (r)=e"(1— f(r)) with f(r) = (1 —e)e* + (1 +¢)e =". We have
f(ro) = min,~q f(r) when *7 = (14 ¢)/(1 — ¢). Hence f(ro) = 2(1 —2)"/2 — 2 as
e | 0. It follows that k'(r) < 0 for all » > 0 if € is small enough. A d-dimensional

example is given by taking this k(r) for the radial component of a Lévy measure. [

Proof of Proposition 2.5. Let j1 = pi(a). We use a general result (an analogue
of Theorem 2.7 of Rajput and Rosinski (1989)) for integrability of functions with
respect to an R%valued independently scattered random measure. In order to show
that a measurable function f(t) is {Xt(“ ) }-integrable, it suffices to show that, for any
0 <ty < oo,

/ (z, Az) f dt<oo
0

/dt/ (H)z|* A Dv(dr) < oo
0 R

021+ [ (070) — gz, SR )] di < o,

R

Pl

where

g(z,x) = elem 1 — i{z,z) /(14 |z]?). (3.9)
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The first condition is equivalent to t)2dt < oo if A #0.) Hence, for our proof,
0

it suffices to show

/ (z, Az)s%e *ds < oo, (3.10)
0

/OO e *ds /Rd(|sx\2 A1)v(dz) < oo, (3.11)

ds < o0. (3.12)

(~,s2) /Rd(g(sz, x) — g(z, sz))v(dr)

O) is evident; (3.11) holds since it is

1/|z| 00
/ |z|?v(dx) / s*e”*ds +/ V(dx)/ e *ds < oo.
R R4 1/lx|

Since [} se™*ds < 00, (3.12) follows from

/OOO e /}Rd(g(sz,x) — g(z, sz))v(dx)

Indeed, we can show (3.13) as

< 1 1
se*ds (z, 1) ST 5
0 R 1+ s%z|2 1+ |z

3 0 o=sg|] — 2
< |z 2] V(dx)/ € =5 sl > ‘ds
0

re 1+ |2[? 1+ s2[al?
< !Z\fl/ |2’ (dz) + || || I (2) v(d),
jal<1

lz|>1

Among these

ds < 0. (3.13)

v(dx)

where

I = / e *s(1+ s*)ds,
0
1 d © =853 log(1 + |z|? e 583ds
12(3?):/ sds / e 5s s_og( |x])+f1 ‘
0 1

I+l ")y T+RP 2P [+ J2?

No restriction on p = ji(4,,) is needed. [

Proof of Proposition 2.7. (i) This is a consequence of Proposition 4.3 of Sato
(2004), since we have Proposition 2.5. A direct check of the integrability asserted is
also possible, as we have |Re C,,(2)| + |[Im C,,(2)| < ¢1 + ¢a|2|? with constants ¢1, ¢z
depending on .

(ii) We have Yu € ID(R?) from Proposition 4.3 of Sato (2004). Tt follows from
(i) that

Cru(z) = /000 C,(sz)e *ds (3.14)
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and hence, for u > 0, Cru(u'2) = u [;° Cu(vz)e " dv. That is, for each z € R?,
u'Chrp(u™2), u > 0, is the Laplace transform of C,,(vz), v > 0. Therefore C),(vz)
is determined by Cv,, for almost every v > 0. Since C,(vz) is continuous in v, it is
determined for all v > 0. Now let v = 1 to get our assertion.
(iii) Use {X* + X2}, where {X*V} and {X"*} are independent.
(iv) By a general result (see Lemma 2.7 and Corollary 4.4 of Sato (2004)),

A / (log(1/£))2dt A,
/ dt/ 1p(zlog(1/t))v(dz), B € B(RY),

7= /olog“/t)( - Lo (o T )

These imply (2.22)-(2.24) by change of variables.
(v) Assume that p, = ta,mmm) — B = MApy) 88 1 — oo. Then C, (2) —
Cu(z), and tr A,, [(|z|* A 1)v,(dz), and |7,| are bounded. Since Yy, and YTy have

cumulant functions expressed as in (2.21) or (3.14) and since we have (iv), we can use

the dominated convergence theorem to get Cv,,,(2) — Cy,(2), that is, Ty, — Tp.
Conversely, assume that ju, = YTu, — pu. Let (/Nln,ﬁn,”%) and (Ap, Vn,vn) be
the triplets of 1, and u,. We claim that {u,} is precompact. The following four
conditions? combined are necessary and sufficient for precompactness of {u,}: (a)
sup,, tr A, < 00; (b) sup,, [za(|z]* A L)vp(dz) < oo; (c) limy_o sup, f|oc|>l vp(dz) = 0;
(d) sup,, || < co. Since {f,} is precompact, these four relations already hold with
(Ap, Vn, ) replaced by (An, 7, ,). We denote them by (a)—(d). Then (a) follows

from (2.22) and (a); (b) follows from (b) since, by (2.23),
/ (Jz*> A1), (dz) = / e_sds/ (|sz|* A 1)v,(dx)
R4 0 Ré

1 0
2/ |x|2l/n(dm)/ s2e_sds+/ l/n(dx)/ e *ds;
|z[<1 0 |z[>1 1

(c) is obtained from (¢) because

/ Uy (dx) :/ e_sds/ Uy (dx) 2/ e_sds/ vp(dx).
|z|>1 0 |z|>1/s 1 |z|>1

To see (d), use (d) and the estimate

x|x]? /OO es(1 — s?)
——,(d —d
/Rd TP ) Ty e

2There is an error in E12.5 of Sato (1999); a condition corresponding to (c) should be added.

sup
n

< 00,
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which is a consequence of (b) as in the proof of (3.13). This finishes the proof of
precompactness of {1, }. Now we can choose a subsequence {,,} of {1, } convergent
to some p. Thus Yy, — YT and T = p. It follows from (ii) that x does not depend
on the choice of the subsequence. Hence u,, — pu.

(vi) Let X, = X" Let X; = X3 — X(1_p_ for 0 < t < 1. Then {X}: 0 <
t < 1} is a process identical in law with {X;: 0 < ¢ < 1} (Proposition 41.8 of Sato
(1999)). Let f(t) be a function on [0, 00) equal to log(1/(1 —t)) for 0 <t < 1 and 0
otherwise. Then f(t) is {X,}-integrable similarly to f(t) of Proposition 2.5 and we
have fsl log(1/t)dX] = 01_5 F(t)dX,. Hence (2.25).

In order to show (2.26), first note that fsl log(1/t)dX; tends to fol log(1/t)dX;
a.s. as s | 0, since [, f pf(t)dX,, B € B X is an independently scattered random
measure. By Theorem 4. 7 of Sato (2004

/log ZdX, = /dXt/ du—/ d“/ dX, = /—du—Xlog—

We have X log(1/s) — 0 a.s. as s | 0 by Proposition 47.11 of Sato (1999). Therefore
limg) g f (X, /u)du exists a.s. and (2.26) holds. [

Proof of Theorem A. Let u € ID(RY) and i = Yp. Let v = v® and v = v,
Then (2.17) holds. Thus, if v = 0, then 7 = 0 and 1 € B(R?). Assume that v # 0 and

v has polar decomposition (A, v¢). Then, for any nonnegative measurable function f,

[ p@ptan) - /0 " esds [ Hsatdn) = /0 " emsds /S A(de) /0 " H(sre)veldr)
= [ i) [utanet [T pseis = [ [T rsoios

where l~5(5) is defined by (2.18). Define a measure @5 on (0,00) by
Qvg(B) :/ Lp(r—H)r tye(dr), B € B((0,00)).
0

Then Qvg(B) is measurable in £ and E(s) is the Laplace transform of @5. Hence E is
completely monotone. Letting A = A and Ve(dr) = z;(r)dr, we see that (X, ve) is a
polar decomposition of 7 and that p € B(R?).

Conversely, suppose that g € B(R?) with triplet (Z, v,7). If v =0, then g =
Tp with w = 15505 by Proposition 2.7 (iv). Suppose that v # 0. Then, in
a decomposition (A,7¢) of v, we have vg(dr) = l¢(r)dr, where l¢(r) is completely

monotone in r and measurable in §. Thus there are measures ()¢ like the measures
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()¢ in Remark 3.2. Now define

V&(B) = /OOO 1B(u*1)u*1©§(du).

Then v is a measure on (0, c0) for each ¢ and

/ F(r)ve(dr) / F(uYyu G ()

for all nonnegative measurable functions f on (0,00). Notice that it follows that

/f r)Qe(dr) /f Y e (du)

for all nonnegative measurable functions f on (0,00). Hence we have (2.18). Let
A = A. Then

o) [ anetan = [ Sde) [ a1 Qetan

=[S ([ @ + [T @) < o

by (3.4). Define v by (2.8). Then v is the Lévy measure of an infinitely divisible

distribution and we can check
/ e ’ds | f(sx)v(dr) = / f(z)v(dx)
0 R R4
for all nonnegative measurable functions f on RY. Define A and v by (2.22) and
(2.24) and let po = piap,y). Then gp="Tp. O

Proof of Theorem B. Let p € L(R?) and i = Yu. Let v = v and v = v,
If v =0, then 7 = 0 and 1 € T(R?). Assume that v # 0. Then v has a polar
decomposition A, ve¢(dr) = ke(r)r~'dr with decreasing ke(r). We claim that g €

T(R?). For any nonnegative measurable f,

/f v(dz) _/0 esds/f(sx)u(d:v) _/Ooo esds/s)\(df) /OOO F(sr&)ke(r)rtdr
/0°° e‘sds/s)\(dg) /000 f(r&)ke(rs™Hrtdr
/SA(dﬁ) /0°° fre)r=tdr /OOO ke(rs™')e *ds.

Define %g(r) by the first equality in (2.20). Recall that k¢(r) tends to 0 as r — oo.
Let kg(u) be the right-continuous modification of k¢(1/u). Then

— [ k(o) = ) = B a™) = [ 1parsulaié

a'la

T
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_ / ooy (0™ )R (1)

for all @ > 0. More generally,

— [ gwdkew) = [ gk w)
/ |

for any nonnegative measurable function g on (0,00). Then

Eg(r) =— /000 e *ds /TO: dke(v) = — /000 dke(v) /TO: e %ds
=— /O N e~V dke(v) = /O h e " dkf (). (3.15)

It follows that ke (r) is completely monotone. Hence i € T(IR%).

Conversely, suppose fi € T(R?) with triplet (A,7,7). If 7 = 0, then i = T with
p Gaussian and hence 1 € T(L(R?)). Suppose v # 0. Then, we have a decomposition
(A, vg) of U with ve(dr) = %5 (r)r~tdr, where Eg (r) is completely monotone. Thus %g(r)
is the Laplace transform of some Re(du). Let kg(u) — Re((0,u]) and let ke(v) be the
right-continuous modification of kg(l /v). The calculation in (3.15) shows the first
equality in (2.20). Hence we have

[ switan = ["eas [Nae) [ soremnan

for all nonnegative measurable functions f(z). Define A = X and let v be the measure

with polar decomposition A, k¢(r)r~'dr. Then we have (2.23) and

/Rd(|x\2/\1)u(dx) :/S)\(df) /000(7“2/\1)k£(r)r1dr

1/r _

— /S’X(dg) /OOO('/’2/\ DEE(r ) tdr = /SX(dg) /Ooo(rArl)d'r Re(du)

0

= /SX(d/f) </OOO Re(du) /01/\(1/u) rdr + /01 Re(du) /11/u rldr>

- /SX(d,f) (% /01 Re(du) + % /IOO w2 Re(du) + /01 log %Eg(du)) < 00

by (3.8) for Eg in place of R¢. Hence, v is the Lévy measure of some p = fi(4,,,) in
L(R?). Here we choose A and v to satisfy (2.22) and (2.24). Thus = Y. O

4. PROOF OF THEOREMS C AND D

We give the proofs of Theorems C and D together with some general results on

complete closedness in the strong sense.
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Proof of Theorem C. (i) Let u € ID(R?) and i = Tp. Let v = v and v = v,
We have

/ log |z|v(dx) :/ esds/ log(s|z|)v(dx)
|z|>2 0 |z|>2/s

:/ (/ e *logsds + e/l log]:c\) V(dx):/ h(z)v(dzx),
Re \J2/|z| Rd

say. Then h(x) = o(|z|*) as |z] | 0 and h(z) ~ log|z| as |z|] — oo. Thus,
Jiaj>2 108 |2[P(dz) < o0 if and only if [, log|z|v(dz) < occ.
(il) If p1 € IDyog(RY), then [ |C\(e7"2)]dt < oo and

Cop(z) = / Cule 'z)dt (4.1)
0
(see the references given for (2.2) and (2.3)). If u € ID(R?), then [~ e™*|C)(s2)|ds <
oo and .
Cru(z) = / e *Cy(sz)ds (4.2)
0

by Proposition 2.7 (i). Let yu € IDjog(R?). Using Ty € IDyog(RY) in (i), we have
Coru(z / dt/ O, (e "sz)ds, (4.3)
Crou(z) = / Sds/ Culetsz)d (4.4)

We claim that - .
/ esds/ |C(e7'sz)|dt < 0o for z € R (4.5)
0 0

If this is proved, then we can interchange the order of the integrations in (4.3) and
(4.4) and get dYp = Ydpu.
The proof of (4.5) is as follows. Let p = ji(a,,). Then

Cule)| < 56 el + el + [ lgtz,a)lv(ao)

where g(z,x) is given by (3.9). Hence

1
|Cu(e'sz)] < §(tr A)e 22|22 + |yle ts|z] +/ lg(z, e sx)|v(dr)
Rd

+ / lgle sz, 2) — g(z, e 'sx)|v(dx) = I, + Iy + I3 + L4,

say. Finiteness of [[~ e *ds [[(I1(s,t) + Ly(s,t))dt is straightforward. Noting that

lg(z, )| < c.|z|?/(1 + |z|?) with a constant ¢, depending on z, we have

00 e o 00 —t 2
/ esds/ I3(s,t)dt < CZ/ V(dx)/ esds/ %dt
0 0 Rd 0 o 1+ (e7's|z])

18



00 s|z|
= CZ/V(CZZE)/ e_sds/ deu
0 o l+u

Cz

=5 (dx)/ e *log(1 + s?|z|*)ds
0

cc,

V2/|z] o0
< — |w|21/(dx)/ e *s%ds + ccz/ V(dx)/ e *(log s + log |z|)ds
2 Jpa 0 R4 V2/|z|

which is finite since [, |z|>v(dr) < oo and f|z|>2

constant such that log(1 4+ v) < c¢(vl(pg(v) + (logv)1l(2.60)(v)) for v > 0. Concerning
14, note that

log |z|v(dx) < oco. Here ¢ is a

2|1 — a?| B [z (la] + |al*)
L [a?) (14 Jaxf?) = 71+ |22)(1+ [az]?)

l9(az, x) = g(z, ax)| = |<az,x>|(

for a € R. Then

3 d oo _—t -3t .3
/[4st H/ |z|*v x/ e's+e s o
0 o 14zl Jo 1+ e s zf?
[Py (dz) [ ule "+ uP|z]
= |2|
re 1+ [z[? (1+u?)u
|z[*v(dx) d:c v(dz) /Sm| u?du
= z =Ji + J,
<ML LT, e

say. Here J; does not depend on s and

o8] 00 2 o0
/ e *Ja(s)ds = || V(dx)Q / “ du2 / e %ds
0 Rdl+|l’| 0 14+u u/|z]

1 o]
< |Z| V(dl') (/ u26—u/|zdu+/ e—u/|m|du)
re 1+ |z[2 \Jo 1

3(de) [l ~1/[a]
= |2| M/ u?e”du + |z!/ |ag|e—u(alaz:) < 00.
0 R

R4 1+|l’|2 d 1+|$|2

This finishes the proof of (4. 5)
It follows from (4.3) and (4.5) that

Coru(2) / dt/ C.(uz)e t“edu—/ C(uz)e™ utdu
= —/0 C,(uz)dei(u )—/0 C,.(ej(t)z)dt (4.6)

for pu € IDyoe(R?). For such p, we have from (4.5) that

/Ooo C (€5 (t)2)]dt < oo (4.7)
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The function ef(t) is {Xt(“)}—integrable for every p = pi(a,) € IDiog(R?). This

is because, for each ty € (0, 00), the integrals

/Ot0<z,Az>ei(t)2dt, /Oto dt /Rd(|xe>;(t)|2 A D w(d),
/Oto (7, 2)|e1(t)dt, /Oto dt /R (el (t)z, 7)) — g(z, € ()z)|v(dz)

are finite. Indeed,

/ dt/ (lex(t)x|* A v (dr) = / esslds/ (|sz|* A Dv(dr) < oo
R4 ej (to) R4

like (3.11), and finiteness of the other mtegrals is shown similarly. It follows from
(4.6) and (4.7) that, if u € IDjg(R?), then [;°ef(t)dX, ) exists and equals ®Yp in
distribution.

It remains to show that [ €] (t)dXt(“) does not exists if u € ID(R?) \ I Dy,e(RY).
It is easy to see that

ei(s) ~e st (s —00), ei(s) ~log(l/s) (s]0).

It follows that

T (t—00), ef(t) ~log(1/t) (t10)

with some constant ¢ > 0, for we have

e (t) ~ ce

tlirglo 63? = 151%1 eii(s) = lggl e8I Hoss — oxp (/100 e "u~ du — /01(1 - e_“)u_ldu) )
er(t s ) e1(s
B Tal1/5 ~ P Tty ~ M e~
Let u € ID(R?) and suppose that f t)dX, ) exists and has distribution f 1. Let
t, — oo and denote i, = L <ft” H(t)dX “)> Then fi, — fi. Let v, = vn) 7 = v
and v = v Then [ f(@)v,(dx) — [ f(z)D(dz) for all bounded continuous functions

f vanishing on a neighborhood of 0 (Sato (1999) Theorem 8.7). Choose t; > 0 such
that e}(t) > ce™"/2 for t > to. Since 1,(B) = [," dt [1g(e}(t)x)v(dz), we get

tn tn
/| | Un(dx) = / dt / Lap>1/e; oy (2)v(de) 2> / dt / Ljaf>2et e} () (dx)
x|>1 0 to

:/ V(da:)/ dt — (log(c|x|/2) — to)v(dz).
Rd (to,talN(0,l0g(clz]/2)) {log(elzl/2)>t0}

Hence [, log|z[v(dz) < oo for some a, that is, 1 € IDyog(RY).

(iii) is a consequence of (i) and (ii) combined with Theorems A and B. [
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As in Maejima, Sato and Watanabe (1999), a class M of distributions on R? is
said to be completely closed in the strong sense if the following are satisfied:

(cesl) M is a subclass of ID(RY),

(ccs2)  py, po € M implies pg % g € M,

(ces3) pp, € M (n=1,2,...) and p,, — p imply p € M,

(cesd) if X is an R-valued random variable with £(X) € M, then L(aX +b) €
M for any a > 0 and b € R¢,

(ccsb)  w € M implies pu*™ € M for any s > 0.
In the following we sometimes omit R? in writing I Diog(R?), L,,(R?), or T,,(R?).

Lemma 4.1. Let M be a class of distributions on R?, completely closed in the strong
sense. Then the following statements are true.

(i) The classes Y(M) and ®(M N IDyx(RY)) are subclasses of M.

(ii) ®(M N ID(RY)) = {0 € LRY): o\ € M for allb > 1}, where p\”) is
defined by (2.30) with o in place of .

(iii) The classes Y (M) and ®(M N1Dy(R?)) are completely closed in the strong

Sense.

Proof. (i) Let p € M and X, = Xt(”). Let 0 = YTu = L(I) where I =
fol log(1/t)dX;. For any s, | 0 let o, = L(I,,) where I,, = fsln log(1/t)dX;. By Propo-
sition 4.5 of Sato (2004), I,, is the limit in probability of a sequence fsln fn(t)d Xy
as m — oo, where f,(t) is a nonnegative step function for each m. We see that
L (fsln fm(t)dXt> € M from (ccs2), (cesd), and (ces5). Thus o, € M by (ccs3). As
n — oo, I, tends to I in probability and thus o, — ¢. Hence ¢ € M. Proof that
Pp e M for pp € M N ID, is similar, using (2.3).

(ii) Suppose that p € M N 1Dy, and ¢ = ®u. Then o € L by (2.2). Notice that

b1 / h eldX, = / h e~ (tHlogb) gy 4 h eldX,,
0 0

logb

) [e'S) logb
/ e_tht = / €_tht + / e_tht,
0 logb 0

for X; = Xt(“) and b > 1, and thus pl(f) =L ( Ologbe*tht) Hence p,(f) € M as in the
proof of (i).
Conversely, suppose that ¢ € L and pl(f) € M for all b > 1. Choosing p € I Djog

with ®u = o, we see that C’pm(z) = OlogbC’M(e’tz)dt. Let gy(z) be the cumulant
b

function of (pl(f))(l/logb)* € M. Then gy(z) = (1/logb) OlogbC’u(e_tz)dt, which tends
to C,(z) as b | 1. Hence (p{”)1/1oeb)* — )y and p € M.
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(iii) The properties (ccsl)—(ccs3) for Y(M) follows from Proposition 2.7. To
see (ccsd), note that fol log(1/t)dt = 1 and afol log 1/t)dX W 4 p = fol log(1/t)dX],
where X| = aX ) 4+ tb. For (cesb), note that sCy,(z) = sfo (zlog(1/t))dt =
[ Ce (2 10g(1/1))dt.

Similarly we can prove (ccsl)—(ces5) for M = ®(M N ID,ys) except (ces3). To
prove (ccs3), suppose that o, € M and 0, — 0 as n — oc. Then, by (ii), pggn) e M.

(on)

Since the characteristic function of p,”" equals 7,(2)/0,(b~'z), which tends to a

continuous function o (z)/a(b'z ) as n — 00, pl(f”) tends to some p € M. We have

5(2) =(b'2)p(2). Hence o € M again by (ii). O

Proof of Corollary to Theorem C. By Lemma 4.1 (iii) it follows from Theorem A
(i) that B(R?) is completely closed in the strong sense. Hence, by Lemma 4.1 (ii), we
get (2.33) from (2.28) of Theorem C. [

Proof of Theorem D. Let us prove (2.36). Although (2.41) and the complete
closedness in the strong sense of L,,(R?) are known facts, it is more natural to reprove
them and to prove the complete closedness in the strong sense of T;,(R?), together
with the proof of (2.36). For m = 0 (2.36) is already proved in Theorem B. To prove
it for m = 1, first note that Ly is completely closed in the strong sense by Lemma
4.1 (iii) and (2.2). Hence so is T by (2.36) for m = 0. Lemma 4.1 (ii) says that
Ly = (Lo N ID)yg). Now we have

Ty = (1o N IDyog) = ©(Y(Lo) N IDiog) = P(Y (Lo N IDog))
= T(I)(LO N IDlog) = T(L1>,

using definition (2.34) of T}, Lemma 4.1 (ii), Theorem C (i), and Theorem C (ii),
consecutively. This is (2.36) for m = 1. Continuing this procedure, we get (2.36),
(2.40), (2.41), and the complete closedness in the strong sense of L,,(R?) and T;,(R%)
for all finite m. It follows that (2.36) holds also for m = co. Moreover (2.40) and
(2.41) also hold for m = oo, since T, = {p € L: ,0,()”) € T, for every b > 1} from
(2.34) and similarly for L.,

Let us show (2.37). Denote by &, = &,(R?) the class of a-stable distributions
on R% Tt is enough to show that Y(&,) = &,. This is evident in the case a = 2
(Gaussian). Let p € &, with 0 < a < 2. Then it has k-function ke(r) = r=. Thus
by (2.20) Tp has k-function [~ r~*s%e *ds = T'(a+1)r=*. Thus Ty € &,. On the
other hand, this shows that, for any i € &,, there is a p € &, such that g = Ypu.
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The assertion T,,, C L,, for all finite m is a consequence of (2.36) and Lemma 4.1

(i). But we have to show the inclusion is strict. Define

I Diogr (RY) = {M € ID(RY): /| (ol n(ar) < oo}

forn =1,2,.... The condition here is equivalent to finiteness of flx (log |z|)" ™) (dx).

Let IDy,0(R?Y) = ID(RY). It is known that

[>2

O(ID)ygr+1(RY) = L(R?) N I Dign (R for n=0,1,..., (4.8)
Lin(R?) = @™ H(ID)ygmn1 (R?)) form=0,1,... (4.9)

(see the references given after (2.41)). The proof of (2.14) actually showed that
BN LyNIDgn 2 Ty N IDyggn for n = 0,1,.... Hence Lo N IDyogn 2 Ty N I Dyogr for
n=0,1,.... Applying ® and using (2.40) and (2.41), we get L1 NI Djogn 2 T1 NI Djogn
for n = 0,1,.... Repeating this, we have L, N IDyogn 2 T,;, N I Diggn for m = 0,1, ...
and n =0,1,.... For n = 0 this is (2.38).

The proof of (2.39) is as follows. It follows from T,, C L,, for finite m that
Ty C Ls. On the other hand we know that & C T, and that T, is completely
closed in the strong sense. Since L, is the smallest class containing & and closed

under convolution and convergence, we have T, D Lo,. U

5. PROOF OF THEOREM E

For a > 0, let A, be the difference operator, A,f(u) = f(u+a) — f(u), u € R,
and let A” be its nth iteration. Clearly

n

AT f(u) = S (~ 1) (j) Fu+ ja)

§=0
for n = 0,1,.... We say that a function f(u) is monotone of order n if Al f(u) > 0,
j=0,1,...,n, for any a > 0 and v € R. When f is monotone of order n for all
n=0,1,..., fis called absolutely monotone. A characterization of distributions in

the class L,,(R%) in terms of Lévy measures is given as follows (Sato (1980)).

Proposition 5.1. Let p € Lo(R?) with v = v such that v = 0 or v # 0 with
spherical component X and h-function he(u).

(i) Let m € {1,2,...}. Then u € L, (R?) if and only if either v = 0 or v # 0
with he(u) being monotone of order m + 1 in u for A-a.e. &.

(ii) We have u € Loo(R?) if and only if either v = 0 or v # 0 with he(u) being

absolutely monotone in u for A-a.e. &.
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Proof of Theorem E. Let us denote by 7! the class of u € Ly such that either
v =0 or v # 0 with h-function satisfying (2.42). First, notice that condition (2.42)

is equivalent to the condition that
héj)(— log ) is completely monotone in r > 0 for j =0,1,...,m, l-a.e. &, (5.1)

Indeed, this clearly implies (2.42). On the other hand, if (2.42) holds, then
—(d/dr)(hV(~logr)) = K™ (—logr)r~! is completely monotone, and thus, since
hm=Y > 0, hm=(—logr) is itself completely monotone, and so on. Since he(—logr)
= ke(r), we have T{ = Ty by Definition 2.3. Let us prove 1), = T, for all finite m.
Part 1. (Proof that T, C T),.) Assume that 1 < m < oo and let g € T,,,. By
virtue of (2.36) of Theorem D, there is j € L,, such that i = Tpu. Let v = v and
v=v®. Ify=0,then v = 0 and i € T',. Assume that v # 0 and let k¢ and
he (resp. Eg and ?Lg) be the k-function and h-function of v (resp. 7). For notational
simplicity, we omit ¢ in writing these functions. By Proposition 5.1, h is monotone
of order m 4+ 1, and by Lemma 3.2 of Sato (1980), h is m — 1 times continuously
differentiable, hU) is nonnegative for j = 0,1,...,m — 1, and A"V is increasing
and convex. Thus there exists the Radon-Nikodym derivative h™ of A1) such

that h(™ is nonnegative and increasing. We take h(™ as right-continuous. We see

that, for j =1,...,m, hU) is nonnegative, increasing, and satisfies h¥)(—o00) = 0 and
AU (w) = [* hD(v)dv. The function I is of C*, because [i € Ty, C Tp. We claim
that .
}Nl(j)(— logr) = / e dhP(logu) for j =0,1,...,m. (5.2)
0

Since h(—logr) = k(r), (5.2) holds for j = 0 by virtue of (2.20). Assume that (5.2)

is true for a given 5 < m. Then, for any 0 < r; < 7o,

Ty __ d -
/ AUTD(—log 7")% = —(hY (=logry) —

T1
0 ) > d
= —/ (e72% — =) dhY) (log u) —/ R (log u) u/ e "udr
0 0 w S

[e’s) u T2

:/ du/ dh(’+1)(logv)/ e "dr
0 0 1
[e’s) ) 00 9 [ dT [e’s) )

= / dhV Y (log v) / du / e dr = / — / e dhU*tV (log v)
0 r1 r1 r 0

since [ duf e udr = f” ~"r=ldr. Hence (5.2) holds with j + 1 in place of j for
almost all 7. As both sides of (5.2) are continuous, it follows that (5.2) holds for all
r > 0. This completes the proof of (5.2). Hence (5.1) holds, that is, 1 € T},.

h(j)(—logrl))
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Part 2. (Proof that T C T,,.) We use induction in m. We already know that
Ty = Tp. Given 1 < m < oo, assume that 7, | C T,,—1. Let g € T, . Then i € Tj
and we can find p € Lg such that g = Y. In order to show g € T,,, it is enough
to show p € L,,, again by Theorem D. Let 7 = v and v = v®. If 7 = 0, then
i and p are Gaussian and p € L,,. Suppose v # 0. Omitting ¢ in the subscript
again, let k, h, E, and h be as in Part 1. Using Part 1, we have 7}, = T,,,_1. Since
peTl CT! |, wehave u € L,,_; and thus h is monotone of order m. Moreover,
the equality in (5.2) holds for j = 0,1,...,m — 1. It follows from g € T}, that, for
j=0,...,m, h9(=logr) is not only completely monotone but also A% (—o00) = 0.
Indeed, h(—o0) = 0 since k(o) = 0, B'(—oc0) = 0 since h(ug) — h(u;) = f;f I (u)du,
and so on. Therefore, %(m)(— log r) is the Laplace transform of a measure ¢ on (0, 00).

Now,

ﬁ(m—l)(_logr):/ E(m)(—logu)u_ldu:/ u‘ldu/ e “o(dv)
r T 0

:/ J(dv)/ e“”uldu:/ U(dv)/ e "y du
0 T 0 v
:/ e "u" o ((0,u))du.

0

This, together with the equality in (5.2) with j = m— 1, implies that dh(™ =V (logu) =
u o ((0,u])du. It follows that the Radon-Nikodym derivative of h(™~Y(u) exists and
has a nonnegative increasing version h™ (u). Indeed, h(™ (logu) = o((0,u]). Hence

h is monotone of order m + 1. Thus p € L,,, completing the proof. [J

Remark 5.2. It follows from Theorem E and (5.1) that u € To(R?) if and only if
p € L(RY) and v = v is either v = 0 or v # 0 having h-function he(u) such that
héj)(— logr) is completely monotone in r > 0 for all j = 0,1,..., A-a.e. & where \
is the spherical component of v. This property of the h-function is equivalent to the
absolute monotonicity of he(u) in u, A-a.e. & We can prove this directly, but this is

also a consequence of To, = L in (2.39) and of Proposition 5.1 (ii).

6. PROOF OF THEOREM F

We prove the characterization of B(R?) and T'(R?) by elementary mixed-exponen-

tial variables and elementary I'-variables in R?.

Proof of Theorem F. Part 1. (Characterization of B(R?).) Let B be the smallest

class of distributions on R? closed under convolution and convergence and containing
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the distributions of all elementary mixed-exponential variables in R?. In order to
prove B = B(RY), it is enough to check the following facts:

(a) B(R?) is closed under convolution and convergence;

(b) L(Ux) € B(R?) for all elementary mixed-exponential variables Uz in R

(c) 4, € B for all z € RY

(d) if 4 = pow0 € B(RY), then yu € BY;

(e) if p=pya00), then p € B°.
Indeed, (a) and (b) imply B(R?) D B (c)-(e) imply B(R?) C B°.

Proof of (a). Closedness under convolution is evident. Since B(RY) = T (I D(R?)),
closedness under convergence is proved in Proposition 2.7 (v).

Proof of (b). Let

P(U € B) = ch/ aje”°ds, B € B(R)
BN(0,00)

j=1
with ¢; >0, 77 ¢j =1, and 0 < a; < --- < a, < co. Then, by Lemma 51.14 of
Sato (1999),

EelU — exp/ (ewr — Dl(r)dr with [(r) :/ e_mzl(aj,a;)(u)du
0 0 j=1

forv e R with ay < a) <ay<a,<az<---<a,<a, =o0. Hence, for x # 0,
Cuale) = [ (& = Dl(r)r = [ Gupa(d) [ (90— DiGr)ar
0 S 0
— [aomta®) [~ it /laar/lal, xR

Therefore £L(Ux) € B(R?).

Proof of (c) and (d). Let B°(R,) be the smallest class closed under convolution
and convergence and containing all finite mixtures of exponential distributions. Then
p’ € B°(R,) if and only if

Cpo(v) = /o (€™ — DI(r)dr + irv, v e R,

with 7° > 0 and with {(r) being completely monotone and satisfying [ (rA1)I(r)dr <
00 (Theorem 51.10 of Sato (1999)). Therefore, if I(r) is such a function and if u €
ID(R?) satisfying

Cu(z) = /0 ("€ — 1)i(r)dr + i(z, ), z e R?

with some £ € S and 7 > 0, then p € B°. Choosing I(r) = 0, we get (c).
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Consider p € ID(R?) such that

Cp(z) = /S A(de) /0 T D rdr 400, 2),  seRY (6.1)

with 7% € R? I¢(r) completely monotone, [¢A(d) [[°(r A 1)le(r)dr < oo, and
Supp (\) being a finite set. Then yu € B? by the discussion above.
Next consider p € ID(R?) such that

Cy(z) = /S A(d€) / " gz, rE)le(r)dr

with ¢ being the function of (3.9) and with l¢(r) being completely monotone and
S MdE) [;°(r? A1)le(r)dr < co. This is a general form of 1 = o0 € B(R?). Using

Remark 3.2, write

Cy(z) = / ) [ Qeldu) / " (e r)er,

(0,00)
where we have (3.3) with a(u) of (3.2). We can choose finite measures X, and Q¢
(n=1,2,...) such that Supp ()\,) is a finite set for each n, Supp (Q,¢) is a finite set

for each n and &, and
a0 [ atw st — [ xae) [ ot gQcan

for any bounded continuous function f(u, ) on (0,00) x S. Using the measure v, cor-
responding to A, and Q,¢, let u, be such that C,,, (2) = [ g(z, x)vn(dz). Then, notic-
ing that [ A(d€) [77(r A1)le(r)dr < oo is equivalent to [ A(d€) J(0.00) @0(W) Q¢ (du) <
oo with ag(u) = u™2 [Jve dv +u e ™ (thus ag(u) ~u™" as u | 0 and ag(u) ~ u™?

as u — 00), we see that C,, (2) is of the form (6.1). Hence u, € B°. Denote
fo(u, &) = a(u)™ /Ooog(z,rf)e_mdr. (6.2)
Then f,(u,§) is bounded and continuous in (u,&) € (0,00) X S, since
/000 lg(z,r&)le ™dr < ¢, /000 r*(1+7r?) e ™dr < c, /Ooo(r2 A De "dr = c,a(u)

with ¢, in the proof of (4.5). Thus we have [ g(z,z)v,(dz) — [ g(z,z)v(dz), that is,
pn, — 1. Hence pu € BP.

Proof of (e). Let pt = fu(a,0,0), Gaussian with mean 0. We claim that ¢ € B°. For
the function f,(u,€) in (6.2) let us show that

T () = —3 (2,6 (6.3)

27



Indeed,

1 = (z,8r 1 _ —ru g Z<Z’§> © o —ru g
fa(u,§) /o (e 1 —i(z,&)r)e r—+ /0 e r

N a(u) a(u) 1+ 72
— 1 > ei(z,f)r/u —1—ilz r/uwe "dr i<Z7 €> > (T/U)3 e~ dr
ua(u) /0 ( Lz brfujedr + ua(u) /0 1+ (r/u)? o

and the first term in the last expression tends to —(1/2)(z,£)? and the second term
tends to 0, since a(u) ~ 2u~3 and e*>97v — 1 — (2, Er/u ~ —(1/2)(z,&)*r? /u?,
while (ua(u))~te!=Om/v — 1 —i(z, &) /u| < (1/2)[{z,&)|*r? uniformly for large u. In
addition to (6.3),

& [ . Cz I VLD
|fz(u,§)| < a(u)/o 1—{—7"26 dr < ua(U)/o 1+(r/u)26 dr

o] 7,2
< czu2/ 5 26_Td7” < 2¢,
0 ur+r

for u so large that a(u) > u=3. Let X be a Gaussian random variable on R? with

distribution p and let A\(B) = E(15(X/|X])|X|?) for B € B(S). Define u, as

Gy () = / A(d) /(O’OO) () f. (1, ©),

where 4, is the d-distribution located at n. Then p, € B® by (d) and C,, (2) tends
to —(1/2) [4(2,€)*A(d€). This means pi, — j, since

d
/S (2, €)2\(dg) = (= X/IX2IX ) = B((z, X)) = 3 B(z;X,X) = (2, Az),
=1
Thus we have p € BY.

Now we have shown that B® = B(R?). The second statement of the theorem
follows from this fact. To see this, let B be the class of all p for which we can
find u,, — p such that each pu, is the distribution of the sum of a finite number of
independent elementary mixed-exponential random variables in R%. Then obviously
B% ¢ B°. It is also easy to see that B is closed under convolution. If u(™ € B,
n=1,2,...,and u™ — p, then p € B since the topology of weak convergence is a
metric topology. Thus B > B° from the definition of BY.

Part 2. (Characterization of T(R?).) We can give a proof similar to that for
B(R?). Let T° be the smallest class of distributions on R? closed under convolution
and convergence and containing the distributions of all elementary I'-variables in R

This time it is enough to prove the statements (a)r—(e)r which are the statements
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(a)—(e) in Part 1 with replacement of B(R?), B and “elementary mixed-exponential
variables” by T'(R%), T°, and “elementary I'-variables”.
The proof of (a)7 is from Theorem B and Lemma 4.1. To see (b)r, we have only

to note that, for any real I'-distributed variable U,
Ee™U = exp/ (e™" — 1)ae " r~tdr, veR
0
with some a > 0 and b > 0 and that, for any = # 0,

Cuz(2) —/ (e=0" — 1V)ae " rtdr = / (5m/w|(d§)/ (=9 — Dae /Il =1y,
0 s 0
To see 6, € T° for x # 0, note that
n|z| / (e'=0r _ 1)emlelry=lar = p|z| / (ei=or/lel) _ Dye=mr=Ydr — iz, 2)
0 0
as n — 00, since n|z|r~ (e!=®/(z) _ 1) tends to i(z,z) boundedly by |(z,z)|. That
is, 9, is approximated by distributions of elementary I'-variables if z # 0. Evidently
8o € T°, since Uz,, — 0 as z,, — 0. Hence we get (c)r.

The proof of (d)r is similar to that of (d). In this case a general = p,0) in
T(RY) satisfies

— * —ru,.—1
Cu(z) = /S)\(df) /(O,oo) Rg(du)/o g(z,r&)e " rdr,
where R, satisfies (3.7) with b(u) of (3.6). Instead of f,(u,§) we use
h.(u,€) = b(u)~" /Oog(z,rf)e_“’”r_ldr,
0

which is bounded and continuous in (u,&) € (0,00) x S. The statement (e)r is
proved like (e), by using lim, o h.(u, &) = —(1/2)(z,£)2. This completes the proof
that T° = T(R?).

The last sentence of the theorem for T(R?) is proved as in Part 1. O

7. EXAMPLES

Example 7.1. Tempered stable distributions of Rosinski. Let 0 < o < 2. Rosinski
(2004) calls a distribution € ID(R?) tempered a-stable if p1 = (4, is such that

A =0 and v has polar decomposition

v(B) = / A(de) / Lp(r€)r e (r)dr, (7.1)
S 0
where g¢(r) is completely monotone in r, measurable in &, and

A(S) <00, qe(04+) =1, ge(400)=0. (7.2)
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We denote by &7 = &7 (R?) the class of tempered a-stable distributions on R? in
Rosiniski’s sense. Notice that, by the uniqueness of polar decomposition in the sense of
Lemma 2.1, &7 NG}, consists only of §-distributions if a # o'. Rosinski (2004) studies
Lévy processes {X;} with £(X;) € &} and shows their functional limit theorems for
small ¢ and for large ¢, their absolute continuity on path spaces with respect to some
a-stable Lévy processes, and their series representations.

Fix the dimension d arbitrarily. Omitting R? in T'(R?), T3(R?), L;(R?) and so
on, we make the following statements.

(i) For every 0 < a < 2, &} C T. This is obvious since r~%ge(r) is completely
monotone whenever ge(r) is.

(i) If 1 < a < 2, then & C T}.

(iii) If 2/3 < @ < 2, then &, C L,.

(iv) If 1/4 < @ < 2, then &}, C L.

(v) Let 0 < a < 1/4. If p is in &% with qe(r) = ¢(£)e O for all ¢ in a set of
positive Ad-measure, where ¢(§) and b(§) are positive measurable functions of £, then
i ¢ Ly and consequently u & Tj.

The proofs are as follows. Let u € &,. The k-function of p is ke(r) = r~%qe(r).
We suppress the subscript £ in ke(r), he(u), ge(r), and Q¢(dv). Then

(u)
) = ae™gfe) — @ Vg (e,

B'(u) = a?e®q(e™) — (2a — 1)el@™ Vg (e74) + el@=2ug/ (™),
R (u) = a®eq(e™) — (3% — 3o 4 1)el @ Dug/(e7¥)

+ 3(ar — 1)el@ g (e7) — ela3ugh(e7u),

Recall that ¢(r) is completely monotone. If 1 < a < 2, then h'(—logr) = ar~%q(r) —

Tl—a /

¢'(r) is completely monotone and hence pu € Ty by Theorem E. We have h/(u) > 0
for all 0 < a < 2 and A"(u) > 0 for 1/4 < a < 2 since

R (=logr) = r~*[a’q(r) — (2a — 1)1 (r) + r2¢"(r)]
= ra/o (rv+a—1/2)%+a—1/4)e ™Q(dv),

where () = ()¢ is the probability measure on (0, 00) satisfying ¢(r fo e " Q(dv).
Thus p€ Ly if 1/4<a<2. If0<a<1/4andif g(r) is as is assumed in (v), then,

for £ in a set of positive A-measure,

B'(—logr) = er “((rb+a —1/2)* +a—1/4)e™™ <0
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for r = (1/2 — ) /b and hence u & Ly. If 2/3 < a < 2, then
R (—logr) = ra/ [ + (3a® — 3a + 1)rv + 3(a — 1)r*v® + r0’]e ™ Q(dv) > 0,
0

since g(w) = o+ (3a® —3a+1)w + 3(a — 1)w? +w? is nonnegative for w > 0 (notice
that ¢’(w) > 0 for w > 0 and ¢(0) > 0).
The simplest case of u € &% (R) is given by

Cu(z) = c/ (e — 1)z~ e " dy
0

with 0 < a < 1 and positive constants ¢ and b. This is the distribution of the Esscher
transform of an a-stable subordinator at a fixed time. The relation with L;(R) of
this u was discussed in Maejima, Sato and Watanabe (2000) p.397. When o = 1/2
this gives an inverse Gaussian distribution. Thus p € Ly (R) and Yu € T1(R) for an

inverse Gaussian .

Example 7.2. As mentioned near the end of Section 2, many examples of distribu-
tions in T'(R) supported on Ry are given in Bondesson (1992) and Steutel and van
Harn (2004). Using Proposition 2.7 (iv) for p € ID(R), we can prove that Yy has
support equal to R if and only if x has support equal to R. Hence, by Theorem B,
distributions in 7'(R) with support R can be constructed by T if we have selfdecom-
posable distributions with support R. For such selfdecomposable distributions as well
as other examples, see Jurek (1997). Further, using Theorem D, we can construct
concrete examples of distributions in T,,,(R), m = 1, 2, since we have several examples
of distributions in L,,(R), m = 1,2, with explicit densities.
Let {Fﬁ“)} be a I'-process with scale parameter a > 0. We have, for t > 0,

at

P(Fga) € B) = —/ 27 le dr, B € B(R).
L(t) Jn,00)

Then the distribution of log F,S“) has density
(a'/T(t)) exp(tz — ae®), z€R

for t > 0. Linnik and Ostrovskii (1977) (Chap. 2, Sect. 6, Example 3) shows that this
distribution is infinitely divisible with triplet (0, v, ) with

v(de) = Lo (2)|z] 11 — ") eda
and some 7 (see also Jurek (1997) and Sato (1999) E 18.19). Thus L(logT'\”) € L(R)

for all t > 0 and @ > 0. Let {Y;} be a strictly a-stable subordinator (0 < o < 1),
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E(em) = exp(—btu®), u > 0, with some b > 0, and let {Z;} be a symmetric o’-
stable Lévy process (0 < of < 2), E(e*%) = exp(—ct|z|*), z € R, with some ¢ > 0.
Akita and Maejima (2002) showed the following.

(i) L1ogT\") € Li(R) for ¢t > 1/2.

(i) £(logT\™) € Ly(R) for t > 1.

(iii) L(logY;) € Li(R) for ¢ > 0.

(iv) L(log|Z:|) € L1(R) for t > 0.

Applying the mapping T to these distributions, we get examples of 77(R) and
Ty(R). In particular T(£(logT\")) has Lévy measure

Ooet:r/sfs )dl‘
1o (x / —ds | —
o) ([ ) 3

and belongs to 77(R) for ¢t > 1/2 and to T5(R) for ¢t > 1. The generating triplets of
L(log ;) and L(log | Z;|) can be obtained by the method of the proofs of (iii) and (iv)
in Akita and Maejima (2002). They are purely non-Gaussian. The Lévy measure of
L(logY}) is

(e7* — e *)dx
l—e)(1—e®)x
for any ¢ > 0 if b = 1 and that of L(log|Z;|) is

1(O,OO) (ZE) (

er e~T _ g2 dx
1 —00 T o 1 oo / o
( ( ’0)(@1 — g2 T Lo (@) (I—e2)(1—e™ m)) |z]
for any ¢ > 0 if ¢ = 1. The explicit distributions for « = 1/2 and o/ =1 are
t I S ¢
P(logY; € B) = 51 Bexp —5T = ¢ dx for b =1,

2t e’
P(log|Z,| € B) = — ——dz { =1.
(log | Z] ) WL€2m+t2 x for c

Recall that £(Y;) = £(1/T]") for this ¥; with a = 1/2 and b= 1.

Example 7.3. Let {X;} be Brownian motion on R? with drift v € R?, that is, {X,} is
the Lévy process with £(X;) = fi(11,0,v), where I is the d x d unit matrix. Let {Z;} be
a subordinator such that £(Z;) is a generalized I'-convolution (equivalently, £(Z;) is
in T(R) and has support in R, ). Subordination of {X;} by {Z;} gives a Lévy process
{Y;} on R% That is, ¥; = Xz, where {X;} and {Z;} are independent. Assume that
L(Z;) is not a d-distribution. Let p' = L£(Y;). In the case d = 1, Halgreen (1979)
showed that u' € L(R) for any 7. Then Takano (1989, 1990) showed that in the case
d > 2 one had a different phenomenon: if v = 0, then u' € L(R?), but, under some
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additional assumption on the so-called U-measure of the generalized I'-convolution
L(Zy), if v # 0, then u! ¢ L(R?) for all ¢ > 0.

Generalized inverse Gaussian distributions are in the class of generalized I'-
convolutions (Halgreen (1979)). If £(Z;) is a generalized inverse Gaussian, then the
explicit expression of the density of £(Y;) using modified Bessel functions is obtained
by Barndorff-Nielsen (1977, 1978); the process {Y;} is referred to as a generalized
hyperbolic motion, the finite dimensional laws of {Y;} being of the generalized hyper-
bolic type.

Let us assume that {Z;} is the ['-process with scale parameter 1 to the end of

this Example 7.3. This is a special case of the generalized inverse Gaussian. We have
p(2) = (142712 = idy, 2) "
The expression of the density of i, t > 0, mentioned above is in this case
c(t, )] T YKy () (2 + [y[*)? ) e

with c(t,7) = 2(2m) Y20 (¢) 7L (2+|y|?) ¢ @/2)/2 Here K;_(4/2) is the modified Bessel
function of the third kind with index ¢ — (d/2). In particular, ;(**1/2 has density

cexp(—=v/2 + [v[? |z + (7, 7))
with a normalizing constant c. We can prove the following for every ¢ > 0.
(i) Let d = 1. Then p* € T(R) and p* & Li(R) (hence u' & T1(R)), irrespective
of whether v =0 or v # 0.
(ii) Let d > 2. If v = 0, then p! € L(R?), pf & T(R?), and p! & Ly (R?). If v # 0,
then p! ¢ L(R?) (hence ut & T(RY)).
Proof of (i). Choose A = d41 + d_1. It is known that p* € L with k-function
e(r) = {texp[—(\/ﬁv2 — )] for £ = +1
texp—(v/2+72+7)7] for £ = —1.
Hence k¢(r) is completely monotone and p* € T'. The fact that p* ¢ Ly (R) is observed
by Maejima, Sato and Watanabe (2000) p. 397.
Proof of (ii). As is shown by Takano (1989), the Lévy measure of ' has polar de-
composition A\(d€), ve(dr) where ) is the Lebesgue measure on the (d—1)-dimensional

unit sphere S and

ve(dr) = 2t €79 Ly (/2 + |y[2r)rtdr (7.3)
with Lgs(u) = (27) "2 K g0 (u).
If v # 0, then u* ¢ L(RY), which is a special case of Takano (1990).
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Now assume that v = 0. Write p = d/2 and k(r) = r?K,(r). Since ¥'(r) =
—rPK, 1(r) < 0, we have u' € L(R?) (this is also a consequence of a general result;
see Sato (2001)). Furthermore,

E'(r) =1 K, o(r) — " K, 1(r) = 2_7’7"2”_2/ e 54952 (25 — 1)ds
0

by the well-known integral representation of the modified Bessel function ((30.28)
of Sato (1999)). Note that f01/2 e™s 7 /(48) g P(25 — 1)ds — —oo as r | 0 (here we
use that d > 2). Thus £”(r) < 0 when r is small enough. Hence k(r) is not
completely monotone and u! € T(R?). For the function h(u) = k(e™™) we have
h'(u) = K" (e7%)e 2 + k' (e"%)e™™ < 0 for some u, and hence ' & L;(R%).
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