${\bf Corrigenda}$

Kiyosi Itô. Stochastic Processes Lectures given at Aarhus University Edited by Ole E. Barndorff-Nielsen and Ken-iti Sato Springer, 2004

Compiled by Ken-iti Sato and Yumiko Sato

Page a, line b from the top and page a, line c from the bottom are denoted by a^b and a_c .

Page and line	For	Read
3_8	C_{i}	\mathcal{C}_i
5_2	dx	$\mathrm{d}x$
21_{10}	(b)	2
22^{8}	$e^{-(1/n)\log\phi(z)}$	$\mathrm{e}^{(1/n)\log\phi(z)}$
23^{3}	(d)	4
38^{3}	Y(m)	Y(2m)
38^{6}	$Y(m) - a = X_m \vee e$	$a - a = (X_m - a)^+$
		$Y(2m) - a = X_{2m} \lor a - a = (X_{2m} - a)^+$
38^{7}	$(X_m - a)^+$	$(X_{2m}-a)^+$
42^{12}	If	It
65_{3}	A	A_i
73_{1}	1987.	1987).
94^{12}	(T.4)	(T.5)
95_{5}	L(E.E)	L(E,E)
97^{16}	$\alpha = 0$	$\alpha > 0$
100^{3}	$+\int_{0}^{\infty}$	$+\int_{1}^{\infty}$
109^{5}	U(b)	$U_arepsilon(b)$
111_{4}	$\mathbf{B}(\mathcal{B}_t)$	$\mathbf{B}(\mathcal{B}_t),$
118^{9}	Theorem 3	Theorem 4
120^{13}	$\overline{\mathcal{B}}_t)$	$\overline{\mathcal{B}}_t$
121^9	Theorem 1	Theorem 2
128_{9}	$a,b,\in R^1$	$a,b \in R^1$

```
G_F
                                                                  G_n
129_{4}
139^{3}
                              H_t
                                                                  H_h
                              (f)
139_{5}
                                                                  (\alpha - A)^{-1}
                              (\alpha - A)
139_{3}
                                                                 E(u(X_{\tau(r)}))
                            E(u(X_{\tau(r)})
140_{11}
                                                                 for a > 0 or a \le -t,
                             for a \neq 0,
146_{4}
147_{2}
148_{3}
                                                                  \mathfrak{D}(A)
                             j_{\infty} = \infty
152^{3}
                                                                 j_{\infty} < \infty
164^{15}
                              2.11.3
                                                                  2.11.2
                                                                  H_0^k = I
                             H_s^k = I
164_{1}
167^{12}
                              Theorem 1
                                                                  Theorem 2
                                                                  R^k
                              R^3
174_{10}
                             \frac{1}{2}\Delta u(a)
e_1) > \frac{\varepsilon_n}{2}
e_i) > \frac{\varepsilon_n}{2}
                                                                 \frac{1}{4}\Delta u(a)
-e_1) > \frac{\varepsilon_n}{2}
-e_i) > \frac{\varepsilon_n}{2}
175^{12}
177^{3}
177^{4}
                                                                  2.8. Let X(t) be a Brownian motion.
191_{5}
                              [-n, -n]
200^{11}
                                                                  [-n,n]
203^{8}
                             G_n(\mathrm{d}x)
                                                                  G(\mathrm{d}x)
207_{4}
                              1 + iz
                                                                  1 - iz
212_{13}
                              Let
                                                                  (i) Let
                             X_2(t) - X_1(s) X_2(t) - X_2(s)

X_2(t) - X_1(s) X_2(t) - X_2(s)
217^{10}
217^{11}
                                                                 T_t x^0
                              T_{x^0}
222_{6}
226_{4}
                              r
                                                                  r
230^{6}
                              \infty)
                                                                  \infty).
```

5⁶ Delete footnoteThe variance of μ is denoted by $V(\mu)$. and add a new footnote The variance of μ is denoted by $V(\mu)$.

Replace 88^9 – 88^{11} by the following:

$$\bigcup_{k} B_k(\omega) \cup A(\omega),$$

where, letting $\{S_k(\omega)\}\$ be the set of all discontinuity points in the interval $(t_1, t_2]$, we

define $B_k(\omega) = (X(S_k -, \omega), X(S_k, \omega))$ if $X(S_k -, \omega) \in A(\omega)$, and $B_k(\omega) = [X(S_k -, \omega), X(S_k, \omega))$ if $X(S_k -, \omega) \notin A(\omega)$. We take the Lebesgue measures of both expressions to get

To Example in p. 128 the following remark should be added: The d(a, b) is not a metric in $R^1 \cup \{\infty\}$, as it does not satisfy

$$d(a, -a) \le d(a, \infty) + d(\infty, -a)$$

for large a. Map $R^1 \cup \{\infty\}$ onto the unit circle in the complex plane by $\phi(a) = e^{2i \arctan a}$, $a \in R^1$, and $\phi(\infty) = -1$ and use the usual distance $(\leq \pi)$ along the circle for a metric instead of the d.

Replace 210^3 – 210^5 by the following:

satisfying (a)–(c). Then the conditional expectation with respect to \mathcal{B}_{n-1} gives $M_{n-1}+A_n=M'_{n-1}+A'_n$. Since $M_{n-1}+A_{n-1}=M'_{n-1}+A'_{n-1}$, we have $A_n-A_{n-1}=A'_n-A'_{n-1}$. Therefore $A_n=A'_n$ for all n, since $A_1=A'_1\equiv 0$. Hence $M_n=M'_n$.

(February 9, 2009)