
LEBESGUE DECOMPOSITION BETWEEN TWO PATH SPACE
MEASURES INDUCED BY LÉVY PROCESSES

KEN-ITI SATO

This is a report of some results in the lecture notes [9].

1. Hellinger–Kakutani inner product and distance

As Kakutani [3] (1948), Brody [1] (1971), and Newman [5], [6] (1972, 73) have

shown, the Hellinger–Kakutani inner product and distance are powerful tool in the

problems of absolute continuity and singularity.

Given a measure µ and a nonnegative measurable function f , we denote by fµ

the measure defined as

(fµ)(B) =

∫

B

fdµ.

Let ρ1, ρ2 be σ-finite measures on a measurable space (Θ,B). The following

notation is used: ρ2 ¿ ρ1 means that ρ2 is absolutely continuous with respect to ρ1;

ρ2 ⊥ ρ1 means that ρ2 and ρ1 are mutually singular; ρ2 ≈ ρ1 means that ρ2 ¿ ρ1 and

ρ1 ¿ ρ2.

Definition 1.1. Let 0 < α < 1. The Hellinger–Kakutani inner product of ρ1 and ρ2

of order α is the measure Hα(ρ1, ρ2) defined by

Hα(ρ1, ρ2) =

(
dρ1

dρ

)α (
dρ2

dρ

)1−α

ρ, 0 < α < 1,(1.1)

where ρ1 ¿ ρ and ρ2 ¿ ρ. It is independent of the choice of ρ. Sometimes we write

dHα(ρ1, ρ2) = (dρ1)
α(dρ2)

1−α.(1.2)

The total mass of Hα(ρ1, ρ2) is written as

hα(ρ1, ρ2) =

∫

Θ

dHα(ρ1, ρ2).(1.3)

Remark 1.2. We have

Hα(ρ1, ρ2) ≤ αρ1 + (1− α)ρ2.(1.4)

We have ρ1 ⊥ ρ2 if and only if hα(ρ1, ρ2) = 0.
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Definition 1.3. Write

C(ρ1) = Cρ(ρ1) =

{
θ ∈ Θ:

dρ1

dρ
> 0

}
,(1.5)

C(ρ2) = Cρ(ρ2) =

{
θ ∈ Θ:

dρ2

dρ
> 0

}
,(1.6)

where ρ1 ¿ ρ and ρ2 ¿ ρ. C(ρ1) is the carrier of ρ1 relative to ρ and C(ρ2) is the

carrier of ρ2 relative to ρ

Remark 1.4. Let ρ2 = ρ2
ac + ρ2

s be the Lebesgue decomposition of ρ2 with respect

to ρ1, where ρ2
ac is absolutely continuous and ρ2

s is singular with respect to ρ1. Then,

ρ2
ac = 1C(ρ1)ρ2 and ρ2

s = 1C(ρ1)cρ2.(1.7)

If ρ1 and ρ2 are finite, then

lim
α↓0

hα(ρ1, ρ2) = ρ2(C(ρ1)) = ρ2
ac(Θ),(1.8)

lim
α↑1

hα(ρ1, ρ2) = ρ1(C(ρ2)).(1.9)

Definition 1.5. Let 0 < α < 1. Define

Kα(ρ1, ρ2) = αρ1 + (1− α)ρ2 −Hα(ρ1, ρ2),(1.10)

which is a σ-finite measure. The total mass

kα(ρ1, ρ2) =

∫

Θ

dKα(ρ1, ρ2)(1.11)

is called the Hellinger–Kakutani distance of order α between ρ1 and ρ2.

Remark 1.6. Sometimes we write

dK1/2(ρ1, ρ2) = 1
2
(
√

dρ1 −
√

dρ2)
2.(1.12)

Let ‖ρ1 − ρ2‖ be the total variation norm of ρ1 − ρ2, admitting infinity. Then

‖ρ1 − ρ2‖ ≥ 2 k1/2(ρ1, ρ2).(1.13)

If ρ1 and ρ2 are finite measures, then

‖ρ1 − ρ2‖ ≤ c k1/2(ρ1, ρ2)
1/2,(1.14)

where c = 2(ρ1(Θ) + ρ2(Θ))1/2.

Lemma 1.7. Assume that

kα(ρ1, ρ2) < ∞(1.15)
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for some 0 < α < 1. Then (1.15) is true for all 0 < α < 1 and

lim
α↓0

kα(ρ1, ρ2) = ρ2(C(ρ1)
c) < ∞,(1.16)

lim
α↑1

kα(ρ1, ρ2) = ρ1(C(ρ2)
c) < ∞.(1.17)

Lemma 1.8. For j = 1, 2, let νj be σ-finite measures on Rd satisfying νj({0}) = 0

and
∫
Rd(|x|2 ∧ 1)dνj < ∞. If kα(ν1, ν2) < ∞, then

∫

|x|≤1

|x|d|ν1 − ν2| < ∞,(1.18)

∫

|x|≤1

|x|d|νj −Hα(ν1, ν2)| < ∞, j = 1, 2.(1.19)

2. General theory

Let D = D([0,∞),Rd), Xt(ω) = ω(t) for ω ∈ D, F0
t = σ(Xs : 0 ≤ s ≤ t), and

F0 = σ(Xs : 0 ≤ s < ∞). Any Lévy process on Rd can be realized as ({Xt}, P ),

where P is a probability measure on (D,F0). It is said to have the generating triplet

(A, ν, γ) if

EP [ei〈z,Xt〉] = exp

[
t

(
− 1

2
〈z, Az〉+ i〈γ, z〉(2.1)

+

∫

Rd

(ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1}(x))ν(dx)

)]

for z ∈ Rd, where A is a symmetric nonnegative-definite d×d matrix, γ ∈ Rd, and ν is

a measure on Rd satisfying ν({0}) = 0 and
∫
Rd(|x|2∧1)ν(dx) < ∞. (Lévy–Khintchine

representation)

Let ({Xt}, P ) be a Lévy process with generating triplet (A, ν, γ), where P is a

probability measure on (D,F0). For any G ∈ B(0,∞)×(Rd\{0}) let J(G,ω) be the number

of s > 0 such that (s,Xs(ω)−Xs−(ω)) ∈ G. Then J(G) has Poisson distribution with

mean ν̃(G), where ν̃ = ds× ν(dx). If G1, . . . , Gn are disjoint, then J(G1), . . . , J(Gn)

are independent. We can define

X ′
t(ω) = lim

ε↓0

∫

(0,t]×{ε<|x|≤1}
{xJ(d(s, x), ω)− xν̃(d(s, x))}(2.2)

+

∫

(0,t]×{|x|>1}
xJ(d(s, x), ω),

where the convergence in the right-hand side is uniform in t in any finite time interval,

P -a. s. Define

X ′′
t (ω) = Xt(ω)−X ′

t(ω).(2.3)
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Then, ({X ′
t}, P ) and ({X ′′

t }, P ) are independent Lévy processes with generating

triplets (0, ν, 0) and (A, 0, γ), respectively. We call ({X ′
t}, P ) and ({X ′′

t }, P ) the jump

part and the continuous part of ({Xt}, P ), respectively. (Lévy–Itô decomposition)

Consider two Lévy processes ({Xt}, P1) and ({Xt}, P2) on Rd, where P1 and P2

are probability measures on (D,F0). For j = 1, 2 denote the generating triplet of

({Xt}, Pj) by (Aj, νj, γj). When A1 = A2, we write A1 = A2 = A. In this case define

R(A) = {Ax : x ∈ Rd}. Denote the restriction of Pj to F0
t by P t

j .

The following Theorem A was given by Newman [5], [6] (1972, 73). He essentially

proved also Corollaries 2.1–2.5.

Theorem A. (i) Suppose that

kα(ν1, ν2) < ∞, A1 = A2, and γ21 ∈ R(A),(NS)

where

γ21 = γ2 − γ1 −
∫

|x|≤1

xd(ν2 − ν1).(2.4)

Then

Hα(P t
1, P

t
2) = e−tLαP t

α for 0 < t < ∞, 0 < α < 1,(2.5)

where

Lα = 1
2
α(1− α)〈η,Aη〉+ kα(ν1, ν2)(2.6)

with η satisfying Aη = γ21, and Pα is the probability measure for which ({Xt}, Pα) is

the Lévy process generated by (A,Hα(ν1, ν2), γα) with

γα = αγ1 + (1− α)γ2 −
∫

|x|≤1

xdKα(ν1, ν2).(2.7)

(ii) Suppose that (NS) is not satisfied, then

Hα(P t
1, P

t
2) = 0 for 0 < t < ∞, 0 < α < 1.(2.8)

Corollary 2.1. The following three conditions are equivalent.

(1) P t
2 and P t

1 are not mutually singular for some 0 < t < ∞.

(2) P t
2 and P t

1 are not mutually singular for any 0 < t < ∞.

(3) Condition (NS) is satisfied.

Corollary 2.2. If P t
2 and P t

1 are not mutually singular, then

ν2(C(ν1)
c) < ∞ and ν1(C(ν2)

c) < ∞(2.9)
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and

P t
2(C(P t

1)) = e−tν2(C(ν1)c) and P t
1(C(P t

2)) = e−tν1(C(ν2)c).(2.10)

Corollary 2.3. The following three conditions are equivalent.

(1) P t
2 ¿ P t

1 for some 0 < t < ∞.

(2) P t
2 ¿ P t

1 for any 0 < t < ∞.

(3) ν2 ¿ ν1 and Condition (NS) is satisfied.

Corollary 2.4. The following three conditions are equivalent.

(1) P t
2 ≈ P t

1 for some 0 < t < ∞.

(2) P t
2 ≈ P t

1 for any 0 < t < ∞.

(3) ν2 ≈ ν1 and Condition (NS) is satisfied.

Corollary 2.5 (dichotomy). If ν2 ≈ ν1, then either P t
2 ≈ P t

1 for all t > 0 or P t
2 ⊥ P t

1

for all t > 0.

The next corollary considers P1 and P2 on the whole F0.

Corollary 2.6. P2 ⊥ P1 if P2 6= P1.

Let us prepare Theorem B. In the case where P t
2 ≈ P t

1, (i) and (iii) of Theorem B

are trivial and (ii) was shown by Skorokhod [10], [11], [12] (1957, 60, 61) and Kunita

and S.Watanabe [4] (1967), a proof of which is given in Sato [8] (1999). But here we

do not assume P t
2 ≈ P t

1, nor P t
2 ¿ P t

1.

Let P t
2 = (P t

2)
ac + (P t

2)
s be the Lebesgue decomposition of P t

2 with respect to

P t
1, and ν2 = ν2

ac + ν2
s be the Lebesgue decomposition of ν2 with respect to ν1. Let

ν = ν1 + ν2. Choose the versions

dνj

dν
= fj for j = 1, 2(2.11)

satisfying

f1 ≥ 0, f2 ≥ 0, and f1 + f2 = 1 everywhere on Rd.(2.12)

Denote 



C1 = {f1 = 1 and f2 = 0},
C2 = {f1 = 0 and f2 = 1},
C = {f1 > 0 and f2 > 0}.

(2.13)

Thus

ν2
ac = 1Cν2 and ν2

s = 1C2ν2 = 1C1∪C2ν2(2.14)
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and dν2
ac/dν1 has the following version:

dν2
ac

dν1

=

{
f2/f1 on C

0 on C1 ∪ C2.
(2.15)

Define

g(x) =

{
log(f2/f1) on C

−∞ on C1 ∪ C2,
(2.16)

g̃(x) =

{
g(x) on C

0 on C1 ∪ C2.
(2.17)

Lemma 2.7. Suppose that P t
2 and P t

1 are not mutually singular for 0 < t < ∞. Then

the following are true.

(i) We can define

Vt = lim
ε↓0

( ∑

(s,Xs−Xs−)∈(0,t]×{|x|>ε}
g̃(Xs −Xs−)− t

∫

|x|>ε

(eg(x) − 1)ν1(dx)

)
;(2.18)

the right-hand side exists P1-a. s. and the convergence is uniform on any bounded time

interval P1-a. s.

(ii) Let η ∈ Rd and define

U
(η)
t = 〈η, X ′′

t 〉 −
t

2
〈η,Aη〉 − t〈γ1, η〉+ Vt,(2.19)

where {X ′′
t } is the continuous part of ({Xt}, P1). Then {U (η)

t : t ≥ 0} is, under P1, a

Lévy process on R with generating triplet (A
(η)
U , νU , γ

(η)
U ) given by

A
(η)
U = 〈η, Aη〉,(2.20)

νU(B) =

∫

Rd

1B(g(x))ν1(dx) for B ∈ BR\{0},(2.21)

γ
(η)
U = −1

2
〈η, Aη〉 −

∫

Rd

(eg(x) − 1− g(x)1{|g(x)|≤1}(x))ν1(dx).(2.22)

The processes {U (η)
t : t ≥ 0} and {J((0, t]× (C1 ∪C2)) : t ≥ 0} are independent under

P1.

Define Λt ∈ F0
t by

Λt = {J((0, t]× (C1 ∪ C2)) = 0}(2.23)

= {Xs −Xs− 6∈ C1 ∪ C2 for all s ∈ (0, t]}.
To the best of our knowledge, the following results are new.
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Theorem B. Suppose that P t
2 and P t

1 are not mutually singular for 0 < t < ∞. Then

the following are true.

(i) For 0 < t < ∞ the Lebesgue decomposition of P t
2 with respect to P t

1 is given

by

(P t
2)

ac = 1ΛtP
t
2,(2.24)

(P t
2)

s = 1D\ΛtP
t
2.(2.25)

We have P1(Λt) = e−tν1(C1) and P2(Λt) = e−tν2(C2).

(ii) The Radon–Nikodým density of (P t
2)

ac is given by

d(P t
2)

ac

dP t
1

= e−tν2(C2)+Ut1Λt ,(2.26)

where Ut = U
(η)
t with η satisfying Aη = γ21.

(iii) Let Q be the probability measure on (D,F0) for which ({Xt}, Q) is the Lévy

process with generating triplet (A, ν2
ac, γ2 −

∫
|x|≤1

xdν2
s). Then

(P t
2)

ac = e−tν2(C2)Qt.(2.27)

Proofs of all results are given in [9].

3. Examples

1. Gaussian case. This is a special case of the results of Cameron and Martin.

Suppose that ({Xt}, P1) and ({Xt}, P2) are Lévy processes on Rd with generating

triplets (A1, 0, γ1) and (A2, 0, γ2), respectively. Then, for any fixed t, Theorems A

and B give the following.

(i) The dichotomy holds: either P t
2 ≈ P t

1 or P t
2 ⊥ P t

1.

(ii) P t
2 ≈ P t

1 if and only if

A1 = A2 and γ2 − γ1 ∈ R(A).(3.1)

(iii) If P t
2 ≈ P t

1, then, for 0 < α < 1,

Hα(P t
1, P

t
2) = e−tLαP t

α,(3.2)

where Pα is the probability measure for which ({Xt}, Pα) is the Lévy process generated

by (A, 0, γα) with γα = αγ1 + (1− α)γ2, and

Lα = 1
2
α(1− α)〈η, Aη〉(3.3)

with η satisfying Aη = γ2 − γ1.
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(iv) If P t
2 ≈ P t

1, then

dP t
2

dP t
1

= eUt ,(3.4)

where

Ut = 〈η, Xt〉 − 1
2
t〈η,Aη〉 − t〈γ1, η〉(3.5)

with η satisfying Aη = γ2 − γ1.

2. Scaled Poisson processes with drift. Suppose that both ({Xt}, P1) and ({Xt}, P2)

are scaled Poisson processes with drift. That is, for j = 1, 2,

EPj [eizXt ] = exp
[
t
(
bj(e

iajz − 1) + iγ0jz
)]

, z ∈ R,(3.6)

with bj > 0, aj ∈ R \ {0}, and γ0j ∈ R. Thus νj = bjδaj
. This is the case studied by

Dvoretzky, Kiefer, and Wolfowitz [2] (1953). P t
2 and P t

1 are not mutually singular if

and only if γ02 = γ01. Under the condition that γ02 = γ01, there are two cases.

Case 1: a2 = a1. In this case we have P t
2 ≈ P t

1 and

P t
2 = (b2/b1)

Nte−t(b2−b1)P t
1,(3.7)

where Nt = Nt(ω) is the number of jumps of Xs(ω) for s ≤ t.

Case 2: a2 6= a1. In this case we have

(P t
2)

ac = et(b1−b2)1ΛtP
t
1,(3.8)

where Λt = {Xs − Xs− 6= a1, a2 for s ∈ (0, t]}. Further we have (P t
2)

ac(D) = e−tb2

and (P t
2)

ac = e−tb2Qt, where ({Xt}, Q) is a deterministic motion,

Q(Xt = tγ02 for t ≥ 0) = 1.

3. Necessary conditions for (NS). Suppose that P t
2 and P t

1 are not mutually

singular for 0 < t < ∞. Then, one can prove from Theorem A that the following

three cases are possible and that no other cases can arise:

Case 1: ν1(Rd) < ∞ and ν2(Rd) < ∞.

Case 2: ν1(Rd) = ∞,
∫
|x|≤1

|x|ν1(dx) < ∞, and ν2(Rd) = ∞,
∫
|x|≤1

|x|ν2(dx) < ∞.

Case 3:
∫
|x|≤1

|x|ν1(dx) = ∞ and
∫
|x|≤1

|x|ν2(dx) = ∞.

Needless to say, these are not sufficient conditions for P t
2 and P t

1 not to be mutually

singular.

4. Lévy processes with finite Lévy measures. Suppose that (Aj, νj, γj), j = 1, 2,

satisfy ν1(Rd) < ∞, ν2(Rd) < ∞, A2 = A1, and γ21 ∈ R(A). Note that γ21 = γ02−γ02,
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where γ0j, j = 1, 2, are respective drifts. We have

(P t
2)

ac(D) = e−tνs
2(Rd).(3.9)

Thus, P t
2 ¿ P t

1 if and only if ν2 ¿ ν1.

5. Absolutely continuous change of Lévy measures. We start from one Lévy

process ({Xt}, P1) on Rd with generating triplet (A1, ν1, γ1). Suppose that we are

given a measurable function g(x) with values −∞ ≤ g(x) < ∞ and a vector η ∈ Rd.

Assume that ∫

Rd

(eg(x)/2 − 1)2ν1(dx) < ∞.(3.10)

Define (A2, ν2, γ2) by

A2 = A1, ν2(dx) = eg(x)ν1(dx), γ2 = γ1 +

∫

|x|≤1

xd(ν2 − ν1) + A1η.

Notice that (3.10) means that k1/2(ν1, ν2) < ∞. Hence γ2 is definable by Lemma 1.8.

The condition (3.10) is equivalent to the property that
∫

|g|≤1

g2dν1 +

∫

g>1

egdν1 +

∫

g<−1

dν1 < ∞.(3.11)

It follows that ∫
(1 ∧ |x|2)ν2(dx) < ∞.(3.12)

A new Lévy process ({Xt}, P2) with generating triplet (A2, ν2, γ2) is obtained in this

way. We have P t
2 ¿ P t

1 by Corollary 2.3 and P t
2 = eUt1ΛtP

t
1 in the notation of Theorem

B. This procedure to get ({Xt}, P2) from ({Xt}, P1) is called density transformation

in [8] and [9]. Esscher transformation (or exponential transformation) in [7] and [8] is

a special case. Drift transformation, deletion of jumps, and truncation of the support

of Lévy measure in [9] are also special cases.
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