LEBESGUE DECOMPOSITION BETWEEN TWO PATH SPACE MEASURES INDUCED BY LÉVY PROCESSES

KEN-ITI SATO

This is a report of some results in the lecture notes [9].

1. Hellinger-Kakutani inner product and distance

As Kakutani [3] (1948), Brody [1] (1971), and Newman [5], [6] (1972, 73) have shown, the Hellinger–Kakutani inner product and distance are powerful tool in the problems of absolute continuity and singularity.

Given a measure μ and a nonnegative measurable function f, we denote by $f\mu$ the measure defined as

$$(f\mu)(B) = \int_B f d\mu.$$

Let ρ_1 , ρ_2 be σ -finite measures on a measurable space (Θ, \mathcal{B}) . The following notation is used: $\rho_2 \ll \rho_1$ means that ρ_2 is absolutely continuous with respect to ρ_1 ; $\rho_2 \perp \rho_1$ means that ρ_2 and ρ_1 are mutually singular; $\rho_2 \approx \rho_1$ means that $\rho_2 \ll \rho_1$ and $\rho_1 \ll \rho_2$.

Definition 1.1. Let $0 < \alpha < 1$. The Hellinger–Kakutani inner product of ρ_1 and ρ_2 of order α is the measure $H_{\alpha}(\rho_1, \rho_2)$ defined by

(1.1)
$$H_{\alpha}(\rho_1, \rho_2) = \left(\frac{d\rho_1}{d\rho}\right)^{\alpha} \left(\frac{d\rho_2}{d\rho}\right)^{1-\alpha} \rho, \quad 0 < \alpha < 1,$$

where $\rho_1 \ll \rho$ and $\rho_2 \ll \rho$. It is independent of the choice of ρ . Sometimes we write

(1.2)
$$dH_{\alpha}(\rho_1, \rho_2) = (d\rho_1)^{\alpha} (d\rho_2)^{1-\alpha}.$$

The total mass of $H_{\alpha}(\rho_1, \rho_2)$ is written as

(1.3)
$$h_{\alpha}(\rho_1,\rho_2) = \int_{\Theta} dH_{\alpha}(\rho_1,\rho_2).$$

Remark 1.2. We have

(1.4)
$$H_{\alpha}(\rho_1, \rho_2) \le \alpha \rho_1 + (1 - \alpha) \rho_2.$$

We have $\rho_1 \perp \rho_2$ if and only if $h_{\alpha}(\rho_1, \rho_2) = 0$.

Definition 1.3. Write

(1.5)
$$C(\rho_1) = C_{\rho}(\rho_1) = \left\{ \theta \in \Theta \colon \frac{d\rho_1}{d\rho} > 0 \right\},$$

(1.6)
$$C(\rho_2) = C_{\rho}(\rho_2) = \left\{ \theta \in \Theta \colon \frac{d\rho_2}{d\rho} > 0 \right\},$$

where $\rho_1 \ll \rho$ and $\rho_2 \ll \rho$. $C(\rho_1)$ is the carrier of ρ_1 relative to ρ and $C(\rho_2)$ is the carrier of ρ_2 relative to ρ

Remark 1.4. Let $\rho_2 = \rho_2^{ac} + \rho_2^s$ be the Lebesgue decomposition of ρ_2 with respect to ρ_1 , where ρ_2^{ac} is absolutely continuous and ρ_2^s is singular with respect to ρ_1 . Then,

(1.7)
$$\rho_2^{ac} = 1_{C(\rho_1)}\rho_2 \text{ and } \rho_2^s = 1_{C(\rho_1)^c}\rho_2.$$

If ρ_1 and ρ_2 are finite, then

(1.8)
$$\lim_{\alpha \downarrow 0} h_{\alpha}(\rho_1, \rho_2) = \rho_2(C(\rho_1)) = \rho_2^{ac}(\Theta),$$

(1.9)
$$\lim_{\alpha \uparrow 1} h_{\alpha}(\rho_1, \rho_2) = \rho_1(C(\rho_2))$$

Definition 1.5. Let $0 < \alpha < 1$. Define

(1.10)
$$K_{\alpha}(\rho_1, \rho_2) = \alpha \rho_1 + (1 - \alpha)\rho_2 - H_{\alpha}(\rho_1, \rho_2),$$

which is a σ -finite measure. The total mass

(1.11)
$$k_{\alpha}(\rho_1, \rho_2) = \int_{\Theta} dK_{\alpha}(\rho_1, \rho_2)$$

is called the Hellinger–Kakutani distance of order α between ρ_1 and ρ_2 .

Remark 1.6. Sometimes we write

(1.12)
$$dK_{1/2}(\rho_1, \rho_2) = \frac{1}{2}(\sqrt{d\rho_1} - \sqrt{d\rho_2})^2.$$

Let $\|\rho_1 - \rho_2\|$ be the total variation norm of $\rho_1 - \rho_2$, admitting infinity. Then

(1.13)
$$\|\rho_1 - \rho_2\| \ge 2 k_{1/2}(\rho_1, \rho_2).$$

If ρ_1 and ρ_2 are finite measures, then

(1.14)
$$\|\rho_1 - \rho_2\| \le c \, k_{1/2} (\rho_1, \rho_2)^{1/2},$$

where $c = 2(\rho_1(\Theta) + \rho_2(\Theta))^{1/2}$.

Lemma 1.7. Assume that

$$(1.15) k_{\alpha}(\rho_1, \rho_2) < \infty$$

for some $0 < \alpha < 1$. Then (1.15) is true for all $0 < \alpha < 1$ and

(1.16)
$$\lim_{\alpha \downarrow 0} k_{\alpha}(\rho_1, \rho_2) = \rho_2(C(\rho_1)^c) < \infty,$$

(1.17)
$$\lim_{\alpha \uparrow 1} k_{\alpha}(\rho_1, \rho_2) = \rho_1(C(\rho_2)^c) < \infty.$$

Lemma 1.8. For j = 1, 2, let ν_j be σ -finite measures on \mathbb{R}^d satisfying $\nu_j(\{0\}) = 0$ and $\int_{\mathbb{R}^d} (|x|^2 \wedge 1) d\nu_j < \infty$. If $k_\alpha(\nu_1, \nu_2) < \infty$, then

(1.18)
$$\int_{|x| \le 1} |x| d|\nu_1 - \nu_2| < \infty,$$

(1.19)
$$\int_{|x| \le 1} |x| d|\nu_j - H_\alpha(\nu_1, \nu_2)| < \infty, \qquad j = 1, 2.$$

2. General theory

Let $\mathbf{D} = D([0,\infty), \mathbb{R}^d)$, $X_t(\omega) = \omega(t)$ for $\omega \in \mathbf{D}$, $\mathcal{F}_t^0 = \sigma(X_s: 0 \le s \le t)$, and $\mathcal{F}^0 = \sigma(X_s: 0 \le s < \infty)$. Any Lévy process on \mathbb{R}^d can be realized as $(\{X_t\}, P)$, where P is a probability measure on $(\mathbf{D}, \mathcal{F}^0)$. It is said to have the generating triplet (A, ν, γ) if

(2.1)
$$E^{P}[e^{i\langle z, X_{t} \rangle}] = \exp\left[t\left(-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma, z \rangle + \int_{\mathbb{R}^{d}} (e^{i\langle z, x \rangle} - 1 - i\langle z, x \rangle \mathbf{1}_{\{|x| \le 1\}}(x))\nu(dx)\right)\right]$$

for $z \in \mathbb{R}^d$, where A is a symmetric nonnegative-definite $d \times d$ matrix, $\gamma \in \mathbb{R}^d$, and ν is a measure on \mathbb{R}^d satisfying $\nu(\{0\}) = 0$ and $\int_{\mathbb{R}^d} (|x|^2 \wedge 1)\nu(dx) < \infty$. (Lévy–Khintchine representation)

Let $({X_t}, P)$ be a Lévy process with generating triplet (A, ν, γ) , where P is a probability measure on $(\mathbf{D}, \mathcal{F}^0)$. For any $G \in \mathcal{B}_{(0,\infty) \times (\mathbb{R}^d \setminus \{0\})}$ let $J(G, \omega)$ be the number of s > 0 such that $(s, X_s(\omega) - X_{s-}(\omega)) \in G$. Then J(G) has Poisson distribution with mean $\tilde{\nu}(G)$, where $\tilde{\nu} = ds \times \nu(dx)$. If G_1, \ldots, G_n are disjoint, then $J(G_1), \ldots, J(G_n)$ are independent. We can define

(2.2)
$$X'_t(\omega) = \lim_{\varepsilon \downarrow 0} \int_{(0,t] \times \{\varepsilon < |x| \le 1\}} \{xJ(d(s,x),\omega) - x\widetilde{\nu}(d(s,x)))\} + \int_{(0,t] \times \{|x| > 1\}} xJ(d(s,x),\omega),$$

where the convergence in the right-hand side is uniform in t in any finite time interval, P-a.s. Define

(2.3)
$$X_t''(\omega) = X_t(\omega) - X_t'(\omega).$$

Then, $(\{X'_t\}, P)$ and $(\{X''_t\}, P)$ are independent Lévy processes with generating triplets $(0, \nu, 0)$ and $(A, 0, \gamma)$, respectively. We call $(\{X'_t\}, P)$ and $(\{X''_t\}, P)$ the jump part and the continuous part of $(\{X_t\}, P)$, respectively. (Lévy–Itô decomposition)

Consider two Lévy processes $({X_t}, P_1)$ and $({X_t}, P_2)$ on \mathbb{R}^d , where P_1 and P_2 are probability measures on $(\mathbf{D}, \mathcal{F}^0)$. For j = 1, 2 denote the generating triplet of $({X_t}, P_j)$ by (A_j, ν_j, γ_j) . When $A_1 = A_2$, we write $A_1 = A_2 = A$. In this case define $\Re(A) = \{Ax : x \in \mathbb{R}^d\}$. Denote the restriction of P_j to \mathcal{F}_t^0 by P_j^t .

The following Theorem A was given by Newman [5], [6] (1972, 73). He essentially proved also Corollaries 2.1–2.5.

Theorem A. (i) Suppose that

(NS)
$$k_{\alpha}(\nu_1,\nu_2) < \infty, \quad A_1 = A_2, \quad and \quad \gamma_{21} \in \mathfrak{R}(A),$$

where

(2.4)
$$\gamma_{21} = \gamma_2 - \gamma_1 - \int_{|x| \le 1} x d(\nu_2 - \nu_1) dx$$

Then

(2.5)
$$H_{\alpha}(P_{1}^{t}, P_{2}^{t}) = e^{-tL_{\alpha}}P_{\alpha}^{t} \quad for \ 0 < t < \infty, \ 0 < \alpha < 1,$$

where

(2.6)
$$L_{\alpha} = \frac{1}{2}\alpha(1-\alpha)\langle\eta, A\eta\rangle + k_{\alpha}(\nu_{1},\nu_{2})$$

with η satisfying $A\eta = \gamma_{21}$, and P_{α} is the probability measure for which $(\{X_t\}, P_{\alpha})$ is the Lévy process generated by $(A, H_{\alpha}(\nu_1, \nu_2), \gamma_{\alpha})$ with

(2.7)
$$\gamma_{\alpha} = \alpha \gamma_1 + (1-\alpha)\gamma_2 - \int_{|x| \le 1} x dK_{\alpha}(\nu_1, \nu_2) dK_{\alpha}(\nu$$

(ii) Suppose that (NS) is not satisfied, then

(2.8)
$$H_{\alpha}(P_1^t, P_2^t) = 0 \quad for \ 0 < t < \infty, \ 0 < \alpha < 1.$$

Corollary 2.1. The following three conditions are equivalent.

- (1) P_2^t and P_1^t are not mutually singular for some $0 < t < \infty$.
- (2) P_2^t and P_1^t are not mutually singular for any $0 < t < \infty$.

(3) Condition (NS) is satisfied.

Corollary 2.2. If P_2^t and P_1^t are not mutually singular, then

(2.9)
$$\nu_2(C(\nu_1)^c) < \infty \quad and \quad \nu_1(C(\nu_2)^c) < \infty$$

and

(2.10)
$$P_2^t(C(P_1^t)) = e^{-t\nu_2(C(\nu_1)^c)}$$
 and $P_1^t(C(P_2^t)) = e^{-t\nu_1(C(\nu_2)^c)}$.

Corollary 2.3. The following three conditions are equivalent.

- (1) $P_2^t \ll P_1^t$ for some $0 < t < \infty$.
- (2) $P_2^t \ll P_1^t$ for any $0 < t < \infty$.
- (3) $\nu_2 \ll \nu_1$ and Condition (NS) is satisfied.

Corollary 2.4. The following three conditions are equivalent.

- (1) $P_2^t \approx P_1^t$ for some $0 < t < \infty$.
- (2) $P_2^t \approx P_1^t$ for any $0 < t < \infty$.
- (3) $\nu_2 \approx \nu_1$ and Condition (NS) is satisfied.

Corollary 2.5 (dichotomy). If $\nu_2 \approx \nu_1$, then either $P_2^t \approx P_1^t$ for all t > 0 or $P_2^t \perp P_1^t$ for all t > 0.

The next corollary considers P_1 and P_2 on the whole \mathcal{F}^0 .

Corollary 2.6. $P_2 \perp P_1$ if $P_2 \neq P_1$.

Let us prepare Theorem B. In the case where $P_2^t \approx P_1^t$, (i) and (iii) of Theorem B are trivial and (ii) was shown by Skorokhod [10], [11], [12] (1957, 60, 61) and Kunita and S. Watanabe [4] (1967), a proof of which is given in Sato [8] (1999). But here we do not assume $P_2^t \approx P_1^t$, nor $P_2^t \ll P_1^t$.

Let $P_2^t = (P_2^t)^{ac} + (P_2^t)^s$ be the Lebesgue decomposition of P_2^t with respect to P_1^t , and $\nu_2 = \nu_2^{ac} + \nu_2^s$ be the Lebesgue decomposition of ν_2 with respect to ν_1 . Let $\nu = \nu_1 + \nu_2$. Choose the versions

(2.11)
$$\frac{d\nu_j}{d\nu} = f_j \quad \text{for } j = 1, 2$$

satisfying

(2.12)
$$f_1 \ge 0, \quad f_2 \ge 0, \quad \text{and } f_1 + f_2 = 1 \quad \text{everywhere on } \mathbb{R}^d.$$

Denote

(2.13)
$$\begin{cases} C_1 = \{f_1 = 1 \text{ and } f_2 = 0\}, \\ C_2 = \{f_1 = 0 \text{ and } f_2 = 1\}, \\ C = \{f_1 > 0 \text{ and } f_2 > 0\}. \end{cases}$$

Thus

(2.14)
$$\nu_2^{ac} = 1_C \nu_2$$
 and $\nu_2^s = 1_{C_2} \nu_2 = 1_{C_1 \cup C_2} \nu_2$

and $d\nu_2^{ac}/d\nu_1$ has the following version:

(2.15)
$$\frac{d\nu_2^{ac}}{d\nu_1} = \begin{cases} f_2/f_1 & \text{on } C \\ 0 & \text{on } C_1 \cup C_2. \end{cases}$$

Define

(2.16)
$$g(x) = \begin{cases} \log(f_2/f_1) & \text{on } C \\ -\infty & \text{on } C_1 \cup C_2, \end{cases}$$

(2.17)
$$\widetilde{g}(x) = \begin{cases} g(x) & \text{on } C \\ 0 & \text{on } C_1 \cup C_2. \end{cases}$$

Lemma 2.7. Suppose that P_2^t and P_1^t are not mutually singular for $0 < t < \infty$. Then the following are true.

(i) We can define

(2.18)
$$V_t = \lim_{\varepsilon \downarrow 0} \left(\sum_{(s, X_s - X_{s-}) \in (0, t] \times \{|x| > \varepsilon\}} \widetilde{g}(X_s - X_{s-}) - t \int_{|x| > \varepsilon} (e^{g(x)} - 1)\nu_1(dx) \right);$$

the right-hand side exists P_1 -a. s. and the convergence is uniform on any bounded time interval P_1 -a. s.

(ii) Let $\eta \in \mathbb{R}^d$ and define

(2.19)
$$U_t^{(\eta)} = \langle \eta, X_t'' \rangle - \frac{t}{2} \langle \eta, A\eta \rangle - t \langle \gamma_1, \eta \rangle + V_t,$$

where $\{X''_t\}$ is the continuous part of $(\{X_t\}, P_1)$. Then $\{U_t^{(\eta)} : t \ge 0\}$ is, under P_1 , a Lévy process on \mathbb{R} with generating triplet $(A_U^{(\eta)}, \nu_U, \gamma_U^{(\eta)})$ given by

(2.20)
$$A_U^{(\eta)} = \langle \eta, A\eta \rangle,$$

(2.21)
$$\nu_U(B) = \int_{\mathbb{R}^d} \mathbb{1}_B(g(x))\nu_1(dx) \quad \text{for } B \in \mathcal{B}_{\mathbb{R} \setminus \{0\}},$$

(2.22)
$$\gamma_U^{(\eta)} = -\frac{1}{2} \langle \eta, A\eta \rangle - \int_{\mathbb{R}^d} (e^{g(x)} - 1 - g(x) \mathbf{1}_{\{|g(x)| \le 1\}}(x)) \nu_1(dx).$$

The processes $\{U_t^{(\eta)}: t \ge 0\}$ and $\{J((0,t] \times (C_1 \cup C_2)): t \ge 0\}$ are independent under P_1 .

Define $\Lambda_t \in \mathcal{F}_t^0$ by

(2.23)
$$\Lambda_t = \{ J((0,t] \times (C_1 \cup C_2)) = 0 \}$$
$$= \{ X_s - X_{s-} \notin C_1 \cup C_2 \text{ for all } s \in (0,t] \}.$$

To the best of our knowledge, the following results are new.

Theorem B. Suppose that P_2^t and P_1^t are not mutually singular for $0 < t < \infty$. Then the following are true.

(i) For $0 < t < \infty$ the Lebesgue decomposition of P_2^t with respect to P_1^t is given by

(2.24)
$$(P_2^t)^{ac} = 1_{\Lambda_t} P_2^t,$$

$$(2.25) (P_2^t)^s = \mathbf{1}_{\mathbf{D} \setminus \Lambda_t} P_2^t.$$

We have $P_1(\Lambda_t) = e^{-t\nu_1(C_1)}$ and $P_2(\Lambda_t) = e^{-t\nu_2(C_2)}$.

(ii) The Radon–Nikodým density of
$$(P_2^t)^{ac}$$
 is given by

(2.26)
$$\frac{d(P_2^t)^{ac}}{dP_1^t} = e^{-t\nu_2(C_2)+U_t} \mathbf{1}_{\Lambda_t},$$

where $U_t = U_t^{(\eta)}$ with η satisfying $A\eta = \gamma_{21}$.

(iii) Let Q be the probability measure on $(\mathbf{D}, \mathcal{F}^0)$ for which $(\{X_t\}, Q)$ is the Lévy process with generating triplet $(A, \nu_2^{ac}, \gamma_2 - \int_{|x| \leq 1} x d\nu_2^s)$. Then

(2.27)
$$(P_2^t)^{ac} = e^{-t\nu_2(C_2)}Q^t.$$

Proofs of all results are given in [9].

3. Examples

1. Gaussian case. This is a special case of the results of Cameron and Martin. Suppose that $({X_t}, P_1)$ and $({X_t}, P_2)$ are Lévy processes on \mathbb{R}^d with generating triplets $(A_1, 0, \gamma_1)$ and $(A_2, 0, \gamma_2)$, respectively. Then, for any fixed t, Theorems A and B give the following.

(i) The dichotomy holds: either $P_2^t \approx P_1^t$ or $P_2^t \perp P_1^t$.

(ii) $P_2^t \approx P_1^t$ if and only if

(3.1)
$$A_1 = A_2 \text{ and } \gamma_2 - \gamma_1 \in \mathfrak{R}(A).$$

(iii) If $P_2^t \approx P_1^t$, then, for $0 < \alpha < 1$,

(3.2)
$$H_{\alpha}(P_1^t, P_2^t) = e^{-tL_{\alpha}}P_{\alpha}^t,$$

where P_{α} is the probability measure for which $({X_t}, P_{\alpha})$ is the Lévy process generated by $(A, 0, \gamma_{\alpha})$ with $\gamma_{\alpha} = \alpha \gamma_1 + (1 - \alpha) \gamma_2$, and

(3.3)
$$L_{\alpha} = \frac{1}{2}\alpha(1-\alpha)\langle\eta, A\eta\rangle$$

with η satisfying $A\eta = \gamma_2 - \gamma_1$.

(iv) If $P_2^t \approx P_1^t$, then

(3.4)
$$\frac{dP_2^t}{dP_1^t} = e^{U_t}$$

where

(3.5)
$$U_t = \langle \eta, X_t \rangle - \frac{1}{2} t \langle \eta, A\eta \rangle - t \langle \gamma_1, \eta \rangle$$

with η satisfying $A\eta = \gamma_2 - \gamma_1$.

2. Scaled Poisson processes with drift. Suppose that both $({X_t}, P_1)$ and $({X_t}, P_2)$ are scaled Poisson processes with drift. That is, for j = 1, 2,

(3.6)
$$E^{P_j}[e^{izX_t}] = \exp\left[t\left(b_j(e^{ia_jz}-1)+i\gamma_{0j}z\right)\right], \quad z \in \mathbb{R},$$

with $b_j > 0$, $a_j \in \mathbb{R} \setminus \{0\}$, and $\gamma_{0j} \in \mathbb{R}$. Thus $\nu_j = b_j \delta_{a_j}$. This is the case studied by Dvoretzky, Kiefer, and Wolfowitz [2] (1953). P_2^t and P_1^t are not mutually singular if and only if $\gamma_{02} = \gamma_{01}$. Under the condition that $\gamma_{02} = \gamma_{01}$, there are two cases.

Case 1: $a_2 = a_1$. In this case we have $P_2^t \approx P_1^t$ and

(3.7)
$$P_2^t = (b_2/b_1)^{N_t} e^{-t(b_2-b_1)} P_1^t$$

where $N_t = N_t(\omega)$ is the number of jumps of $X_s(\omega)$ for $s \leq t$.

Case 2: $a_2 \neq a_1$. In this case we have

(3.8)
$$(P_2^t)^{ac} = e^{t(b_1 - b_2)} \mathbf{1}_{\Lambda_t} P_1^t,$$

where $\Lambda_t = \{X_s - X_{s-} \neq a_1, a_2 \text{ for } s \in (0, t]\}$. Further we have $(P_2^t)^{ac}(\mathbf{D}) = e^{-tb_2}$ and $(P_2^t)^{ac} = e^{-tb_2}Q^t$, where $(\{X_t\}, Q)$ is a deterministic motion,

$$Q(X_t = t\gamma_{02} \text{ for } t \ge 0) = 1.$$

3. Necessary conditions for (NS). Suppose that P_2^t and P_1^t are not mutually singular for $0 < t < \infty$. Then, one can prove from Theorem A that the following three cases are possible and that no other cases can arise:

Case 1: $\nu_1(\mathbb{R}^d) < \infty$ and $\nu_2(\mathbb{R}^d) < \infty$.

Case 2:
$$\nu_1(\mathbb{R}^d) = \infty$$
, $\int_{|x| \le 1} |x| \nu_1(dx) < \infty$, and $\nu_2(\mathbb{R}^d) = \infty$, $\int_{|x| \le 1} |x| \nu_2(dx) < \infty$.
Case 3: $\int_{|x| < 1} |x| \nu_1(dx) = \infty$ and $\int_{|x| < 1} |x| \nu_2(dx) = \infty$.

Needless to say, these are not sufficient conditions for P_2^t and P_1^t not to be mutually singular.

4. Lévy processes with finite Lévy measures. Suppose that (A_j, ν_j, γ_j) , j = 1, 2, satisfy $\nu_1(\mathbb{R}^d) < \infty$, $\nu_2(\mathbb{R}^d) < \infty$, $A_2 = A_1$, and $\gamma_{21} \in \mathfrak{R}(A)$. Note that $\gamma_{21} = \gamma_{02} - \gamma_{02}$,

where γ_{0j} , j = 1, 2, are respective drifts. We have

(3.9)
$$(P_2^t)^{ac}(\mathbf{D}) = e^{-t\nu_2^s(\mathbb{R}^d)}.$$

Thus, $P_2^t \ll P_1^t$ if and only if $\nu_2 \ll \nu_1$.

5. Absolutely continuous change of Lévy measures. We start from one Lévy process $({X_t}, P_1)$ on \mathbb{R}^d with generating triplet (A_1, ν_1, γ_1) . Suppose that we are given a measurable function g(x) with values $-\infty \leq g(x) < \infty$ and a vector $\eta \in \mathbb{R}^d$. Assume that

(3.10)
$$\int_{\mathbb{R}^d} (e^{g(x)/2} - 1)^2 \nu_1(dx) < \infty.$$

Define (A_2, ν_2, γ_2) by

$$A_2 = A_1, \quad \nu_2(dx) = e^{g(x)}\nu_1(dx), \quad \gamma_2 = \gamma_1 + \int_{|x| \le 1} x d(\nu_2 - \nu_1) + A_1\eta.$$

Notice that (3.10) means that $k_{1/2}(\nu_1, \nu_2) < \infty$. Hence γ_2 is definable by Lemma 1.8. The condition (3.10) is equivalent to the property that

(3.11)
$$\int_{|g| \le 1} g^2 d\nu_1 + \int_{g>1} e^g d\nu_1 + \int_{g<-1} d\nu_1 < \infty.$$

It follows that

(3.12)
$$\int (1 \wedge |x|^2)\nu_2(dx) < \infty$$

A new Lévy process $({X_t}, P_2)$ with generating triplet (A_2, ν_2, γ_2) is obtained in this way. We have $P_2^t \ll P_1^t$ by Corollary 2.3 and $P_2^t = e^{U_t} \mathbf{1}_{\Lambda_t} P_1^t$ in the notation of Theorem B. This procedure to get $({X_t}, P_2)$ from $({X_t}, P_1)$ is called density transformation in [8] and [9]. Esscher transformation (or exponential transformation) in [7] and [8] is a special case. Drift transformation, deletion of jumps, and truncation of the support of Lévy measure in [9] are also special cases.

References

- Brody, E. J. (1971) An elementary proof of the Gaussian dichotomy theorem, Zeit. Wahrsch. Verw. Gebiete 20, 217–226.
- [2] Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1953) Sequential decision problems for processes with continuous time parameter. Testing hypotheses, Ann. Math. Statist. 24, 254–264.
- [3] Kakutani, S. (1948) On equivalence of infinite product measures, Ann. Math. 49, 214–224.
- [4] Kunita, H. and Watanabe, S. (1967) On square integrable martingales, Nagoya Math. J. 30, 209-245.
- [5] Newman, C. M. (1972) The inner product of path space measures corresponding to random processes with independent increments, *Bull. Amer. Math. Soc.* **78**, 268–271.

- [6] Newman, C. M. (1973) On the orthogonality of independent increment processes, *Topics in Probability Theory* (ed. D. W. Stroock and S. R. S. Varadhan, Courant Inst. Math. Sci., New York Univ., New York), 93–111.
- [7] Sato, K. (1990) Subordination depending on a parameter, Probability Theory and Mathematical Statistics, Proc. Fifth Vilnius Conf. (ed. B. Grigelionis et al., VSP/Mokslas, Utrecht/Vilnius) Vol. 2, 372–382.
- [8] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press., Cambridge.
- [9] Sato, K. (2000) Density Transformation in Lévy Processes, Lecture Notes, Centre for Math. Physics and Stochastics, Univ. Aarhus.
- [10] Skorokhod, A.V. (1957) On the differentiability of measures which correspond to stochastic processes, I. Processes with independent increments, *Theory Probab. Appl.* 2, 407–432.
- Skorokhod, A. V. (1960) On the differentiability of measures corresponding to random processes, II. Markov processes, *Theory Probab. Appl.* 5, 40–49.
- [12] Skorokhod, A. V. (1961) Studies in the Theory of Random Processes, Addison-Wesley, Reading, Mass., 1965. [Russian original published in 1961]

Hachiman-yama 1101-5-103, Tenpaku-ku, Nagoya, 468-0074 Japan