LEBESGUE DECOMPOSITION BETWEEN TWO PATH SPACE
MEASURES INDUCED BY LEVY PROCESSES

KEN-ITI SATO

This is a report of some results in the lecture notes [9)].

1. HELLINGER-KAKUTANI INNER PRODUCT AND DISTANCE

As Kakutani [3] (1948), Brody [1] (1971), and Newman [5], [6] (1972, 73) have
shown, the Hellinger-Kakutani inner product and distance are powerful tool in the
problems of absolute continuity and singularity.

Given a measure g and a nonnegative measurable function f, we denote by fu

the measure defined as
((B) = [ fin.
B

Let p1, pa be o-finite measures on a measurable space (©,8). The following
notation is used: py < p; means that ps is absolutely continuous with respect to pi;
p2 L p1 means that p, and p; are mutually singular; p, =~ p; means that p; < p; and

p1 << pa.

Definition 1.1. Let 0 < a < 1. The Hellinger-Kakutani inner product of p; and ps
of order « is the measure H,(p1, p2) defined by

dpr\* (dp; e
1.1 H,(p1, = — — , 0 1,
(1.1) (p1,p2) (dp) (dp) p <a<

where p; < p and ps < p. It is independent of the choice of p. Sometimes we write

(1.2) dHo(p1, p2) = (dpr)*(dpa)' .

The total mass of H,(p1, p2) is written as

(1.3) ha(p1, p2) = /@dHa(Ph/b)-
Remark 1.2. We have
(1.4) Hy(p1, p2) < apr+ (1 — a)pa.

We have p; L po if and only if h,(p1, p2) = 0.



Definition 1.3. Write

(1.5) C(p1) =Ch(p) = {0 € 0: (il_’; > O} :
(1.6) Clp2) = Cplp2) = {9 € 0: CZ—/E > O} :

where p; < p and ps < p. C(py) is the carrier of p; relative to p and C(ps) is the

carrier of py relative to p

Remark 1.4. Let py = p2%¢ + p2® be the Lebesgue decomposition of ps with respect

to p1, where po®© is absolutely continuous and p»® is singular with respect to p;. Then,

(17) p2ac = 1C(p1)p2 and p2s = lC(p1)cp2‘

If p; and py are finite, then

(1.8) E?Ol ha(p1; p2) = p2(Cp1)) = p2"(O),
(1.9) 16%1 ha(p1, p2) = p1(C(p2)).

Definition 1.5. Let 0 < a < 1. Define

(1.10) Ko(p1,p2) = apr + (1 — a)p2 — Halpr, p2),

which is a o-finite measure. The total mass
(1.11) balprsp2) = [ ARl po)
e
is called the Hellinger-Kakutani distance of order a between p; and ps.

Remark 1.6. Sometimes we write

(1.12) dK1/2(p1, p2) = 3(V/dpr — \/dps)”.

Let ||p1 — pz2]| be the total variation norm of p; — py, admitting infinity. Then
(1.13) o1 = pall = 2 k1y2(pr, p2).

If p; and py are finite measures, then

(1.14) lp1 — pal] < Ck1/2(f717,02)1/27

where ¢ = 2(p1(0) + p2(0))Y/2.

Lemma 1.7. Assume that

(1.15) ka(p1; p2) < o0



for some 0 < a < 1. Then (1.15) is true for all 0 < a < 1 and

(1.16) lalﬂ)l kao(p1; p2) = p2(C(p1)°) < o0,
(1.17) lim ko (p1, p2) = p1(C(p2)%) < o0.

Lemma 1.8. For j =1, 2, let v; be o-finite measures on R? satisfying v;({0}) = 0
and [o.(|z]* A1)dv; < oo. If ko(v1,12) < 00, then

(1.18) / |z|d|vy — 1s| < o0,
<1
(1.19) /| |z|d|v; — Ho(1h, 12)] < 00, j=12
z|<1

2. GENERAL THEORY

Let D = D([0,00),RY), X;(w) = w(t) for w € D, F? = 0(X,: 0 < s < 1), and
FO = 0(X,: 0 < s < o00). Any Lévy process on R? can be realized as ({X;}, P),
where P is a probability measure on (D, F°). It is said to have the generating triplet
(A,v,v) if

(2.1) EP[ei®X0] = exp {t( — %(z, Az) + i, 2)

+ /Rd(e“”> —1- i<z7x>1{|zs1}(ﬂf)>V<df”))]

for = € R, where A is a symmetric nonnegative-definite d x d matrix, v € R, and v is
a measure on R? satisfying v/({0}) = 0 and [,.(|z|*A1)v(dx) < oo. (Lévy Khintchine
representation )

Let ({X;}, P) be a Lévy process with generating triplet (A, v, ), where P is a
probability measure on (D, F°). For any G € By c)x® (0} let J(G,w) be the number
of s > 0 such that (s, Xs(w) — X;—(w)) € G. Then J(G) has Poisson distribution with
mean 7(G), where v = ds x v(dz). If Gy,...,G, are disjoint, then J(G1),...,J(G,)
are independent. We can define

(2.2) X;(w) =lim {zJ(d(s,x),w) — zv(d(s,x))}

€0 J (0, x {e<|z|<1}

4 / 2 J(d(s, ), ),
0,t]x{|z|>1}

where the convergence in the right-hand side is uniform in ¢ in any finite time interval,

P-a.s. Define
(2.3) X{ (w) = Xi(w) — Xj(w).



Then, ({X;},P) and ({X/}, P) are independent Lévy processes with generating
triplets (0,v,0) and (A, 0, ), respectively. We call ({X/}, P) and ({X/'}, P) the jump
part and the continuous part of ({X;}, P), respectively. (Lévy—Itd decomposition)

Consider two Lévy processes ({X;}, Py) and ({X;}, ) on R? where P, and P,
are probability measures on (D, F°). For j = 1, 2 denote the generating triplet of
({X:}, Pj) by (A;,v;,7;). When A; = Ay, we write A} = Ay = A. In this case define
R(A) = {Az: z € R}. Denote the restriction of P; to F} by P;.

The following Theorem A was given by Newman [5], [6] (1972, 73). He essentially

proved also Corollaries 2.1-2.5.

Theorem A. (i) Suppose that

(NS) ka(vi,12) <oo, A1 =Ay, and 721 € R(A),
where
(24) Y21 = V2 — V1 — / I‘d(l/g - Vl).
|z[<1
Then
(2.5) H, (P!, P =e Pl for0<t<oo, 0<a<l,
where
(2.6) Lo = a1 — a)(n, An) + ko(v1, 15)

with n satisfying An = 91, and P, is the probability measure for which ({X;}, P,) is
the Lévy process generated by (A, Hy(11,12), Vo) with
(2.7) o= a1+ (1= a)ys — / 2d K, (v, ).
x| <1
(ii) Suppose that (NS) is not satisfied, then

(2.8) H,(P,P)=0 for0<t<oo, 0<a<l.

Corollary 2.1. The following three conditions are equivalent.
(1) P} and P} are not mutually singular for some 0 < t < oo.
(2) Py and P} are not mutually singular for any 0 < t < oo.
(3) Condition (NS) is satisfied.

Corollary 2.2. If P! and P} are not mutually singular, then
(2.9) (C(1)) <oo and 1v1(C(1r)°) < o0



and
(2.10) PYC(PY)) = e €00 gng  PYC(PL)) = et (C02)),

Corollary 2.3. The following three conditions are equivalent.
(1) P} < P for some 0 <t < c0.
(2) P < P} for any 0 <t < oc.
(3) o < v1 and Condition (NS) is satisfied.

Corollary 2.4. The following three conditions are equivalent.
(1) P} = P} for some 0 <t < 0.
(2) P}~ P} for any 0 <t < 0.
(3) vo = vy and Condition (NS) is satisfied.

Corollary 2.5 (dichotomy). If vy = vq, then either P ~ P} for allt >0 or Py 1L P}
for allt > 0.

The next corollary considers P, and P, on the whole FV.
Corollary 2.6. P, L P, if P, #+ P.

Let us prepare Theorem B. In the case where P} ~ P}, (i) and (iii) of Theorem B
are trivial and (ii) was shown by Skorokhod [10], [11], [12] (1957, 60,61) and Kunita
and S. Watanabe [4] (1967), a proof of which is given in Sato [8] (1999). But here we
do not assume P! ~ P!, nor P} < P}

Let P = (P})* + (P)® be the Lebesgue decomposition of P with respect to
P}, and v = 15 + 15°® be the Lebesgue decomposition of v, with respect to v;. Let

v = v; + 5. Choose the versions

dv; ,
(2.11) d_y] = f; forj=1,2
satisfying
(2.12) f1>0, fo>0, and f,+ fo =1 everywhere on R?.
Denote

Cy={fi=1and f, = 0},
(2.13) Cy={fi=0and f, =1},

C={fi>0and f, > 0}.
Thus

(214) I/Qac = 107/2 and VQS == 1021/2 = 1C1U02y2



and dy®/dvy has the following version:

(2.15) dra® _ {f2/f1 on C

divy 0 on C; U (Y.

Define

log(f2/f1) onC
2.16 —
( ) g(m) {—OO on 01 U 02,

- g(x) onC

2.1 =
( 7> g(x) {0 on Ol U 02.

Lemma 2.7. Suppose that P} and P} are not mutually singular for 0 < t < oo. Then
the following are true.
(i) We can define

(218) Vi= 1;%( Z g(Xs - Xs—) - t/
(8,Xs—Xs—

(e9®) — 1)1/1(dx));
JeO.t)x{lal>e} [el>e
the right-hand side exists Py-a. s. and the convergence is uniform on any bounded time
nterval Pi-a. s.

(ii) Let n € R? and define
t
2
where { X'} is the continuous part of ({X;}, P1). Then {Ut("): t >0} is, under Py, a

Lévy process on R with generating triplet (Agﬁ, l/U,'y[(]")) given by

(2.19) U™ = (n, X!y — ~(n, An) — t(y,n) + Vi,

(2.20) AP = (n, An),
(2.21) vy(B) = /Rd 1g(g(x))vi(dx)  for B € Bg\ (o,
(2.22) W = 50, An) - / (€ =1 = (@) Ly (1) (da).

The processes {Ut(”): t >0} and {J((0,t] x (C;UC%)): t > 0} are independent under
P

Define A; € F? by

(2.23) Ay = {J((0,4] x (C; U Cy)) = 0}
={X,— X, €C1UCs for all s € (0,t]}.

To the best of our knowledge, the following results are new.



Theorem B. Suppose that Pi and P} are not mutually singular for 0 <t < co. Then
the following are true.

(i) For 0 <t < oo the Lebesgue decomposition of Py with respect to P} is given

by
(2.24) (Ph) = 1,4, PL,
(2.25) (Pgt)s = 1D\AtP§.

We have Py(Ay) = e~ () and Py(A) = e 2(C2),
(ii) The Radon—Nikodym density of (P)* is given by

()™ _
2.26 = ¢ (G HU
( ) dpf e A¢s

where Uy = Ut(n) with n satisfying An = o1.
(iii) Let Q be the probability measure on (D, F°) for which ({X:},Q) is the Lévy

process with generating triplet (A, 12, vy — f\z|<1 xdvy®). Then

(2.27) (PH)e = e~tra(Ca)t,

Proofs of all results are given in [9].

3. EXAMPLES

1. Gaussian case. This is a special case of the results of Cameron and Martin.
Suppose that ({X;}, P1) and ({X;}, P,) are Lévy processes on R? with generating
triplets (A1,0,71) and (Ag,0,7,), respectively. Then, for any fixed ¢, Theorems A

and B give the following.
(i) The dichotomy holds: either P} ~ P} or P} 1 P}.
(i) Pi ~ P} if and only if

(31) Al = A2 and Yo — V1 € 9{(14)
(iii) If P: ~ P}, then, for 0 < a < 1,
(3:2) Ho(Pi, Py) = e Py,

where P, is the probability measure for which ({ X}, P,) is the Lévy process generated
by (A,0,7,) with 7o = ay1 + (1 — a)ye, and

(3.3) Lo = 30(1 = a){n, An)

with 7 satisfying An = v, — 7.



(iv) If P} ~ P}, then

P}
4 — ="
(3.4) ap ¢
where
(3.5) Up = (n, Xs) — 5t(n, An) — t{y1,m)

with n satisfying An = v — 1.

2. Scaled Poisson processes with drift. Suppose that both ({ X}, P1) and ({X:}, P)

are scaled Poisson processes with drift. That is, for j =1, 2,
(3.6) BR[N] = exp [t (bj(e"" — 1) +ing;2)], 2z €R,

with b; >0, a; € R\ {0}, and ~o; € R. Thus v; = b;d,,. This is the case studied by
Dvoretzky, Kiefer, and Wolfowitz [2] (1953). P and P} are not mutually singular if
and only if 792 = Y01. Under the condition that ygo = 71, there are two cases.

Case 1: ay = a;. In this case we have P} ~ P} and
(3.7) Pj = (bo/by)Nte " P

where N; = Ny(w) is the number of jumps of X,(w) for s < ¢.

Case 2: ay # ay. In this case we have
(3.8) (Pl = eitr=t1,, P,

where Ay = {X, — X, # ay,ay for s € (0,t]}. Further we have (P})*(D) = e =

and (PY)* = e~ 2!, where ({X;}, Q) is a deterministic motion,

Q(Xt = t’)/oz for ¢ > 0) =1.

3. Necessary conditions for (NS). Suppose that Pi and P} are not mutually
singular for 0 < ¢ < oo. Then, one can prove from Theorem A that the following
three cases are possible and that no other cases can arise:

Case 1: 11(RY) < 0o and 1»(R?) < co.

Case 2: v1(R?) = o0, f|x\§1 |z|v1(dz) < oo, and v5(RY) = oo, f|m|§1 |z|ve(dr) < oc.

Case 3: fl:c|§1 |z|v1 (dz) = 0o and f\x|§1 |x|vo(dx) = 0.

Needless to say, these are not sufficient conditions for Py and P} not to be mutually

singular.

4. Lévy processes with finite Lévy measures. Suppose that (A4;,v;,7,), j = 1,2,
satisfy 11 (R?) < oo, 15(R?) < 00, Ay = Ay, and 791 € R(A). Note that o1 = Y02 —Y02,



where 7y;, 7 = 1,2, are respective drifts. We have
(3.9) (Py)"(D) = ¢4,
Thus, P} < P} if and only if vy < 1.

5. Absolutely continuous change of Lévy measures. We start from one Lévy
process ({X;}, P1) on RY with generating triplet (A;,v1,v1). Suppose that we are
given a measurable function g(z) with values —oo < g(x) < oo and a vector n € R%.

Assume that

(3.10) / (92 _ 1)2p) (dzx) < oo.
Rd
Define (Asg, v2,72) by

Ay = Ay, V2(d55) = eg(w)lfl(dfF% Y2 =M1 +/ ifd(’/2 - V1) + An.

|z|<1
Notice that (3.10) means that k;/5(v1,15) < co. Hence 7, is definable by Lemma 1.8.
The condition (3.10) is equivalent to the property that

(3.11) / G*diy —1—/ eddv, +/ dvy < 00.
lg|<1 g>1 g<—1

It follows that
(3.12) /(1 A |z|?)vy(dr) < oo.

A new Lévy process ({X,}, P») with generating triplet (As, v5,72) is obtained in this
way. We have Pi < P! by Corollary 2.3 and P = eVt1,, P} in the notation of Theorem
B. This procedure to get ({X:}, P) from ({X;}, P) is called density transformation
in [8] and [9]. Esscher transformation (or exponential transformation) in [7] and [8] is
a special case. Drift transformation, deletion of jumps, and truncation of the support

of Lévy measure in [9] are also special cases.
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