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1. Introduction

In 1949 G. Pólya [9] found the following fact.

Theorem 1.1. Let ϕ(z) be a real-valued continuous function on R satisfying ϕ(0) =

1, ϕ(−z) = ϕ(z), and limz→∞ ϕ(z) = 0, and being convex for z > 0.

(i) Then ϕ(z) is the characteristic function of a probability distribution µ on R.

(ii) Furthermore one can define

(1.1) f(x) = lim
c→∞

1

π

∫ c

0

ϕ(z) cos xz dz = lim
c→∞

−1

πx

∫ c

0

ϕ′(z) sin xz dz

for any x 6= 0. This f(x) is nonnegative and continuous and satisfies f(−x) = f(x)

on R \ {0}. The distribution µ is absolutely continuous on R having this f(x) as a

density function.

We will give some remarks concerning proofs of Theorem 1.1 and show the fol-

lowing.

Theorem 1.2. Let ϕ(z) and f(x) be as in Theorem 1.1. Then limx→∞ f(x) = 0.

If ϕ(z) is integrable, then f(x) can be defined by (1.1) also for x = 0 and we have

limx→0 f(x) = f(0) < ∞. If ϕ(z) is not integrable, then limx→0 f(x) = ∞.

We will make some related comments and give an application of Theorem 1.1 to

a proof of a two-dimensional result of Kojo [6].

2. On proofs of Theorem 1.1

The name “Pólya’s Theorem” is usually used for the assertion (i) of Theorem

1.1. There are two methods to prove (i). One is the method of polygonal lines.

First, one notices that, for any a > 0, the tent function ϕ(z) = (1 − a−1|z|) ∨ 0

is the characteristic function of a distribution. Then one shows that, in the case
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where ϕ(z) has a compact support and its graph is a polygonal line, ϕ(z) is a convex

combination of tent functions. Then the limiting procedure from such functions

handles the general case. This method was given by Dugué and Girault [3] in 1955

and used in many books such as Feller [4] pp. 505, 509, Berg and Forst [1] pp. 28–

29, and Billingsley [2] p. 363. This method proves the assertion (i) nicely but does

not prove (ii). However, as Billingsley [2] mentions, we can give an example of an

absolutely continuous distribution with non-integrable characteristic function by this

method (in p. 363 he says “a continuous density”, but the density of such a distribution

diverges at the origin; see Theorem 1.2).

The second method is Fourier-analytic and proves (i) and (ii) simultaneously. It

is adopted by Pólya himself. First, one proves that a function f(x) can be defined by

(1.1) and is nonnegative. Let us check it in detail. It follows from the assumptions

on ϕ(z) that it is nonnegative, decreasing1, absolutely continuous, and expressed as

ϕ(z) = 1−
∫ z

0

ψ(u)du, z > 0,

where ψ(z) is a nonnegative decreasing function on (0,∞). In fact, ϕ(z) is differen-

tiable almost everywhere on (0,∞) and ψ(z) = −ϕ′(z). Fix x > 0. Then

1

π

∫ c

0

ϕ(z) cos xz dz =
1

π

∫ c

0

cos xz dz − 1

π

∫ c

0

cos xz dz

∫ z

0

ψ(u)du(2.1)

=
sin cx

πx
− 1

π

∫ c

0

ψ(u)du

∫ c

u

cos xz dz

=
sin cx

πx
− 1

π

∫ c

0

ψ(u)

(
sin cx

x
− sin xu

x

)
du

= ϕ(c)
sin cx

πx
+

1

πx

∫ c

0

ψ(z) sin xz dz,

where the first term tends to 0 as c →∞. Let

aj(x) =
1

πx

∫ π/x

0

ψ

(
jπ

x
+ z

)
sin xz dz,

b(c, x) =
1

πx

∫ c

nπ/x

ψ(z) sin xz dz,

where n = n(c, x) satisfying nπ/x < c 6 (n + 1)π/x. Then

1

πx

∫ c

0

ψ(z) sin xz dz =
n−1∑
j=0

1

πx

∫ (j+1)π/x

jπ/x

ψ(z) sin xz dz + b(c, x)

1We use increase and decrease in the wide sense allowing flatness.
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=
n−1∑
j=0

(−1)jaj(x) + b(c, x).

Since ψ(z) is nonnegative and decreasing, we have aj(x) > 0 and aj(x) > aj+1(x).

As c → ∞, n tends to ∞ and
∑n−1

j=0 (−1)jaj(x) is convergent to a nonnegative limit

function. Since ψ(z) → 0 as z →∞,

|b(c, x)| 6 1

πx

∫ c

nπ/x

ψ(z)dz 6 1

πx

∫ (n+1)π/x

nπ/x

ψ(z)dz → 0, c →∞.

Hence we can define f(x) by (1.1) for x 6= 0 and f(x) is nonnegative. Obviously

f(−x) = f(x). For any choice of 0 < a < b < ∞, the convergence in (1.1) is uniform

with respect to x in [a, b]. Indeed, by the discussion above,

f(x)− 1

π

∫ c

0

ϕ(z) cos xz dz =
∞∑

j=n

(−1)jaj(x) + o(1),

where o(1) is uniform in [a, b] as c →∞, and hence
∣∣∣∣f(x)− 1

π

∫ c

0

ϕ(z) cos xz dz

∣∣∣∣ 6 an(x) + o(1).

This gives the uniformity in [a, b] of the convergence in (1.1), since

an(x) 6 1

πx

∫ π/x

0

ψ
(nπ

x
+ z

)
dz 6 1

x2
ψ

(nπ

x

)
6 1

x2
ψ

(
c− π

x

)
6 1

a2
ψ

(
c− π

a

)
→ 0

as c →∞. It follows that f(x) is continuous on (0,∞). Next, if we prove
∫ ∞

−∞
f(x)dx = 1,(2.2)

∫ ∞

−∞
eizxf(x)dx = ϕ(z), z ∈ R,(2.3)

then (i) and (ii) are true and µ(dx) = f(x)dx. Concerning the proof of (2.2) and (2.3),

Pólya [9] only suggests the use of Fourier theory. This is not simple, as ϕ(z) is not

always integrable. The proof of (i) and (ii) in Lukacs’s book [8] pp. 83–84 says that

here one can use the result in Titchmarsh [14] p. 16 that, if g(z), z > 0, is decreasing

to 0 as z →∞ and integrable on any finite interval, then, for any u > 0,

(2.4)
1

2
(g(u + 0) + g(u− 0)) =

2

π
lim

ε↓0, R→∞

∫ R

ε

cos ux

(
lim

M→∞

∫ M

0

g(z) cos xz dz

)
dx.

Lukacs says that this implies (2.2) by letting g = ϕ and u = 0, but to let u = 0 is

erroneous. He also cites Riesz and Livingston [10] for a short proof of (2.4). If we look
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into [10], we can find the following better result: if g(z) is a complex-valued function

of bounded variation on the line R and g(z) → 0 as |z| → ∞, then

(g(u + 0) + g(u− 0))/2(2.5)

=
1

2π
lim

ε↓0, R→∞

(∫ −R

−ε

+

∫ R

ε

)
e−iux

(
lim

M,N→∞

∫ N

−M

g(z)eixzdz

)
dx. u ∈ R,

where the inner limit exists except possibly at x = 0. This result gives (2.2) and (2.3)

and completes the proof of (i) and (ii) of Theorem 1. (Lukacs [8] pp. 87–88 describes

also essential points of the method of polygonal lines.)

The proof of Linnik’s book [7] pp. 13–14, 37–39 is also Fourier-analytic. He rig-

orously shows (i) and (ii) in the case where ϕ(z) has a compact support, and then

by approximation he gives (i) for a general ϕ(z). He does not try to prove (ii) in the

general case.

Let us give a simple proof of (ii), assuming the validity of (i).

Proof of (ii). We admit the existence of µ with characteristic function ϕ(z).

Since ϕ(z) is real, µ is symmetric. By Lévy’s theorem (Theorem 26.2 of [2])

(2.6) µ((a, b]) = lim
c→∞

∫ b

a

dx

2π

∫ c

−c

e−ixzϕ(z)dz = lim
c→∞

∫ b

a

dx

π

∫ c

0

ϕ(z) cos xz dz

for any 0 < a < b < ∞ satisfying µ({a}) = µ({b}) = 0. As is explained above,

we can define f(x) by (1.1) for x 6= 0 and f(x) is nonnegative and continuous. The

convergence in (1.1) is uniform with respect to x ∈ [a, b]. Hence, it follows from (2.6)

that

µ((a, b]) =

∫ b

a

f(x)dx.

Therefore, on R\{0}, µ is absolutely continuous with density f(x). We have µ({0}) =

1−∫∞
−∞ f(x)dx. By the Riemann-Lebesgue theorem (Theorem 26.1 of [2]), ϕ(z) tends

to µ({0}) as z →∞. Hence µ({0}) = 0 by the assumption on ϕ(z). This finishes the

proof of (ii).

3. Proof of Theorem 1.2

Let ϕ(z) and f(x) be as in Theorem 1.1. Let us prove Theorem 1.2. In order to

see limx→∞ f(x) = 0, recall that, for x > 0,
∣∣∣∣f(x)− 1

π

∫ c

0

ϕ(z) cos xz dz

∣∣∣∣ 6 an(x) + b(c, x) +
ϕ(c)

πx
6 2

x2
ψ

(nπ

x

)
+

ϕ(c)

πx
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6 2

x2
ψ

(
c− π

x

)
+

ϕ(c)

πx
.

Fix c and let x →∞. Then, noting that
∫ c

0
ϕ(z) cos xz dz → 0, we get f(x) → 0.

If ϕ(z) is integrable, then

f(x) =
1

π

∫ ∞

0

ϕ(z) cos xz dz

for x 6= 0 and we can define also f(0) by this formula, getting lim
x→0

f(x) = f(0) < ∞.

Let x > 0. In general we have

lim
c→∞

1

πx

∫ c

2π/x

ψ(z) sin xz dz > 0

by the same reason as the proof that f(x) > 0. Hence, it follows from (1.1) that

f(x) > 1

πx

∫ 2π/x

0

ψ(z) sin xz dz(3.1)

=
1

πx

∫ π/x

0

(
ψ(z)− ψ

(π

x
+ z

))
sin xz dz.

Choose c > 0 arbitrarily and let 0 < x < π/c. Since ψ(z) is decreasing, we have

f(x) > 1

πx

∫ c

0

(
ψ(z)− ψ

(π

x
+ z

))
sin xz dz.

We have
1

πx

∫ c

0

ψ(z) sin xz dz → 1

π

∫ c

0

ψ(z)z dz, x ↓ 0

since
∫ c

0
ψ(z)dz = 1− ϕ(c) < ∞, and

1

πx

∫ c

0

ψ
(π

x
+ z

)
sin xz dz → 0, x ↓ 0

since ψ(∞) = 0. Therefore,

lim inf
x↓0

f(x) > 1

π

∫ c

0

ψ(z)z dz =
1

π

∫ c

0

(ϕ(z)− ϕ(c))dz.

Since ϕ(c) decreases to 0 as c →∞,

lim
c→∞

1

π

∫ c

0

(ϕ(z)− ϕ(c))dz =
1

π

∫ ∞

0

ϕ(z)dz

by the monotone convergence theorem. Now, if ϕ(z) is not integrable, then the last

integral is infinite and lim
x↓0

f(x) = lim inf
x↓0

f(x) = ∞.
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4. Remarks and examples

We give some simple facts related to Theorem 1.1 and some examples.

Proposition 4.1. ([1], [5]) Let ϕ(z) be a continuous function on R satisfying ϕ(0) =

1, ϕ(−z) = ϕ(z), limz→∞ ϕ(z) = p ∈ (0, 1), and being convex for z > 0. Then

ϕ(z) = µ̂(z), where µ = pδ0 +(1− p)µ1 with an absolutely continuous distribution µ1.

Proof. Let ϕ1(z) = (1 − p)−1(ϕ(z) − p). Then ϕ1(z) satisfies the conditions in

Theorem 1.1. Hence ϕ1 = µ̂1, where µ1 is an absolutely continuous distribution. Let

µ = pδ0 + (1− p)µ1. Then µ̂ = p + (1− p)ϕ1 = ϕ. ¤

A function is said to be log-convex if it is positive and its logarithm is convex.

Proposition 4.2. ([5]) Let ϕ(z) be a continuous function on R satisfying ϕ(0) = 1,

ϕ(−z) = ϕ(z), and 0 < ϕ(z) 6 1, and being log-convex for z > 0. Then ϕ(z) is the

characteristic function of an infinitely divisible distribution on R.

Proof. For positive z1 and z2 we have

log ϕ

(
z1 + z2

2

)
6 log ϕ(z1) + log ϕ(z2)

2

and hence

ϕ

(
z1 + z2

2

)
6

√
ϕ(z1) ϕ(z2) 6 ϕ(z1) + ϕ(z2)

2
.

Thus ϕ(z) is convex for z > 0. The function ϕ(z) must be decreasing for z > 0.

Hence limz→∞ ϕ(z) exists. Therefore, by Theorem 1.1 (i) and Proposition 4.1, ϕ(z)

is the characteristic function of a distribution µ. For any t > 0, ϕ(z)t satisfies exactly

the same conditions as ϕ(z). Hence ϕ(z)t is a characteristic function. It follows that

µ is infinitely divisible. ¤

We call functions ϕ(z) in Theorem 1.1 and Proposition 4.1 characteristic functions

of Pólya type, and functions ϕ(z) in Proposition 4.2 characteristic functions of log-

Pólya type. As we have seen above, log-Pólya type implies Pólya type.

It is known that there is an infinitely divisible distribution with Pólya type char-

acteristic function which is not of log-Pólya type (Keilson and Steutel [5] p. 246).

Proposition 4.3. Let µ be an infinitely divisible distribution on R with characteristic

function µ̂(z) of log-Pólya type.

(i) Then, for any a ∈ (0,∞), there is an infinitely divisible distribution µ1 with

characteristic function of log-Pólya type such that µ1 6= µ and µ̂1(z) = µ̂(z) for

z ∈ [−a, a].
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(ii) If the given distribution µ is not Cauchy, then, for some a ∈ (0,∞), there

is an infinitely divisible distribution µ2 with characteristic function of log-Pólya type

such that µ2 6= µ and µ̂2(z) = µ̂(z) for z 6∈ [−a, a].

Proof. Let log µ̂(z) = ψ(z). Given a > 0, we can construct a continuous function

ψ̃(z) different from ψ(z) such that ψ̃(0) = 0, ψ̃(−z) = ψ̃(z), ψ̃(z) is nonpositive and

convex for z > 0, and ψ̃(z) = ψ(z) for 0 6 z 6 a. Indeed, if ψ(z) is not linear for

a 6 z 6 b for some b > a, then let

ψ̃(z) =

{
ψ(z) for z ∈ [0, a] ∪ [b,∞)

ψ(a) + (ψ(b)− ψ(a))(z − a)/(b− a) for z ∈ (a, b);

if ψ(z) = −c(z − a) + ψ(a) with c > 0 for z > a, then let 0 < α < 1 and let

ψ̃(z) =

{
ψ(z) for z ∈ [0, a]

cα−1a(1− a−αzα) + ψ(a) for z ∈ (a,∞).

This proves (i). In order to show (ii), choose a > 0 such that ψ(z) is not linear for

z ∈ [0, a], and make ψ̃(z) changing the part for z ∈ [0, a] linearly. ¤

Proposition 4.4. Let ϕ(z) be a Pólya type characteristic function. Suppose that

there is ε > 0 such that ϕ(z) is strictly convex for z ∈ (0, ε). Then the density f(x)

corresponding to ϕ(z) satisfies f(x) > 0 for all x ∈ R.

Proof. It follows from the assumption that the function ψ(z) is strictly decreasing

for z ∈ (0, ε). Hence the inequality (3.1) gives the positivity of f(x). ¤

Proposition 4.5. Let µ be a distribution with Pólya type characteristic function.

Then
∫ |x|µ(dx) = ∞. If moreover µ is infinitely divisible, then its Lévy measure ν

satisfies
∫
|x|>1

|x|ν(dx) = ∞.

Proof. If
∫ |x|µ(dx) < ∞, then µ̂(z) is differentiable on R. But µ̂(z) is not

differentiable at z = 0. This proves the first assertion. The second assertion fol-

lows from the first because, for an infinitely divisible distribution µ, the properties∫ |x|µ(dx) = ∞ and
∫
|x|>1

|x|ν(dx) = ∞ are equivalent ([11] Theorem 25.3). ¤

Remark 4.6. Distributions with Pólya type characteristic functions are not necessar-

ily unimodal. Indeed, for a > 0, the tent function ϕa(z) = (1−a−1|z|)∨0 corresponds

to the density fa(x) = (1 − cos ax)/(πax2) ([2] p. 358, [4] p. 503, [8] p. 85) and this

is not unimodal as it has zero points. The next simplest Pólya type characteristic

function is ϕ(z) = pϕa(z) + (1− p)ϕb(z) with 0 < p < 1 and 0 < a < b. In this case
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the corresponding density function is f(x) = pfa(x) + (1 − p)fb(x). If, for example,

b = 2a, then it is easy to see that f(x) is not unimodal.

Proposition 4.7. There is a non-unimodal infinitely divisible distribution with log-

Pólya type characteristic function. Such a compound Poisson distribution exists; also

such a distribution with infinite Lévy measure exists.

Proof. Let ν be a non-unimodal distribution with Pólya type characteristic func-

tion. Let ϕ(z) = exp(ν̂(z) − 1). Then, for any t > 0, ϕ(z)t is a log-Pólya type

characteristic function. Let µt be the corresponding infinitely divisible distribution;

µt is compound Poisson and ν is the Lévy measure of µ1. If t is sufficiently small, then

µt is non-unimodal. Indeed if, on the contrary, there is a sequence tn ↓ 0 such that µtn

is unimodal, then ν must be unimodal with mode 0 by virtue of Wolfe’s theorem ([11]

Theorem 54.1). Now choose t sufficiently small, consider ϕ(z)te−s|z|α with 0 < α 6 1

and s > 0, and then let s be sufficiently small. This is again of log-Pólya type (see

Example 4.8); the corresponding distribution is non-unimodal and its Lévy measure

has infinite total mass. ¤

Example 4.8. ([2], [4], [7], [8]) If

(4.1) ϕ(z) = e−|z|
α

with 0 < α 6 1, then ϕ is a characteristic function of log-Pólya type. If 1 < α 6 2,

then the function ϕ(z) of (4.1) is a characteristic function but not of Pólya type.

These are symmetric α-stable distributions.

Example 4.9. ([7]) Let

(4.2) ϕ(z) =
1

1 + |z|α
with 0 < α 6 1. Then ϕ(z) is a characteristic function of log-Pólya type. Thus it

corresponds to an infinitely divisible distribution. Indeed, for z > 0,

(log ϕ)′ = −αzα−1

1 + zα
< 0,

(log ϕ)′′ =
αz2α−2 − α(α− 1)zα−2

(1 + zα)2
> 0.

When α = 2, (4.2) is the characteristic function of a symmetrized exponential dis-

tribution, which is infinitely divisible. Also when 1 < α < 2, ϕ(z) of (4.2) is the

characteristic function of an infinitely divisible distribution, which is proved by Lin-

nik [7] p. 40 by complex-variable method. But the fact that (4.2) gives an infinitely
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divisible characteristic function for 0 < α 6 2 is a consequence of the observation that

it appears in subordination of the symmetric α-stable process by the Γ-subordinator

(see [11] p. 203). These are called Linnik distributions or geometric stable distribu-

tions of index 0 < α 6 2.

As a consequence of Theorem 1.2, the Linnik distributions of index 0 < α 6 1

have densities continuous on R\{0} and divergent at 0. In the case of index 1 < α 6 2,

they have densities bounded and continuous on R, as their characteristic functions

are integrable.

The subordination representation shows the selfdecomposability of the Linnik

distributions with index 0 < α 6 2 by the result of [12] p. 324. Hence they are

unimodal with mode 0 by Yamazato’s theorem [15].

Other interesting properties of the classes of Pólya type characteristic functions

and of log-Pólya type characteristic functions are discussed in Keilson and Steutel [5]

pp. 245–249 and Steutel and van Harn [13] p. 205 et seq.

We do not know whether all infinitely divisible distributions with Pólya type

characteristic functions have absolutely continuous Lévy measures.

5. Kojo’s result

Kojo [6] found the following interesting fact. Let R2 be the 2-dimensional Eu-

clidean space, whose elements are column vectors x = (x1, x2)
′, the prime denoting

the transpose. Let S = {ξ = (ξ1, ξ2)
′ ∈ R2 : ξ1

2 + ξ2
2 = 1}, the unit circle in R2, and

let S1 = {ξ = (ξ1, ξ2)
′ ∈ S : ξ1 > 0, ξ2 > 0}.

Proposition 5.1. Let 0 < α 6 1. Let λ be a finite measure on S1 with λ(S1) > 0.

Let µ be the symmetric α-stable distribution on R2 with characteristic function

(5.1) µ̂(z1, z2) = ϕ(z1, z2) = exp

[
−2

∫

S1

|z1ξ1 + z2ξ2|αλ(dξ)

]
, (z1, z2)

′ ∈ R2.

Define ϕ̃(z1, z2), (z1, z2)
′ ∈ R2, as follows:

(5.2) ϕ̃(z1, z2) =

{
ϕ(z1, z2) if z1z2 > 0

ϕ(z1,−z2) if z1z2 < 0.

Then ϕ̃(z1, z2) is the characteristic function of a symmetric α-stable distribution µ̃

on R2 such that µ̃ 6= µ.
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Remark 5.2. In the proposition above define λ∗ by λ∗(B) = λ(−B) for Borel sets

B. Then

µ̂(z1, z2) = exp

[
−

∫

S

|z1ξ1 + z2ξ2|α(λ + λ∗)(dξ)

]
, (z1, z2)

′ ∈ R2.

The measure λ + λ∗ is the so-called spectral measure of the symmetric α-stable dis-

tribution µ. The description of the spectral measure of µ̃ is not known.

We give a proof of Proposition 5.1, using Theorem 1.1. This is essentially the

same proof as Kojo’s in [6]. The idea of the proof is entirely Kojo’s, although he does

not use Theorem 1.1.

Proof of Proposition 5.1. If we prove that ϕ̃(z1, z2) is the characteristic function

of some distribution µ̃ on R2, then µ̃ is symmetric α-stable because ϕ̃(−z1,−z2) =

ϕ̃(z1, z2) and ϕ̃(z1, z2)
t = ϕ̃(t1/αz1, t

1/αz2); moreover µ̃ 6= µ since ϕ̃(z1, z2) 6= ϕ(z1, z2)

if z1z2 < 0. (Note that |z1ξ1 − z2ξ2| > |z1ξ1 + z2ξ2| for ξ1 > 0, ξ2 > 0 if z1z2 < 0.)

In order to prove that ϕ̃(z1, z2) is a characteristic function, we may assume that

λ is concentrated at a point, that is,

(5.3) ϕ(z1, z2) = exp(−b |z1ξ1 + z2ξ2|α), (z1, z2)
′ ∈ R2

with b > 0 for some fixed ξ1 > 0 and ξ2 > 0. Indeed, if it is proved that ϕ̃(z1, z2) is

a characteristic function in this case, then ϕ̃(z1, z2) is a characteristic function in the

case where λ is concentrated to a finite number of points, and then the general case

is handled by limiting procedure.

Now we assume (5.3). We have ϕ̃(z1, z2) = ϕ̃(−z1, z2) = ϕ̃(z1,−z2) = ϕ̃(−z1,−z2).

Let

ψ(z1, z2) = −b(z1ξ1 + z2ξ2)
α for z1 > 0, z2 > 0.

We denote the partial derivative with respect to zj by putting the subscript j. Thus,

for z1 > 0 and z2 > 0,

ψj1(z1, z2) = −bα(z1ξ1 + z2ξ2)
α−1ξj1 < 0,

ψj1j2(z1, z2) = −bα(α− 1)(z1ξ1 + z2ξ2)
α−2ξj1ξj2 > 0,

where j1, j2 ∈ {1, 2}. In general, for n > 1,

(5.4) (−1)nψj1···jn(z1, z2) > 0 for z1 > 0, z2 > 0, j1, · · · , jn ∈ {1, 2}.
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On {z1 > 0, z2 > 0}, we obtain, from ϕ = eψ and from (5.4),

ϕj1 = eψψj1 < 0,

ϕj1j2 = eψ(ψj1ψj2 + ψj1j2) > 0,

and, in general,

ϕj1···jn = eψ
∑

C(k1, . . . , kn; n(1), . . . , n(l−1), n)ψk1···kn(1)
ψkn(1)+1···kn(2)

· · ·ψkn(l−1)+1···kn ,

where the summation is over 1 6 l 6 n, 1 6 n(1) < n(2) < · · · < n(l − 1) < n, and

sequences (k1, k2, . . . , kn) which are identical with (j1, . . . , jn) up to the order. Here

C(k1, . . . , kn; n(1), . . . , n(l − 1), n) is a nonnegative integer. If n is odd (resp. even),

then each term in the summation is nonpositive (resp. nonnegative). Moreover the

term ψj1ψj2 · · ·ψjn appears with coefficient 1. Hence

(5.5) (−1)nϕj1···jn(z1, z2) > 0 for z1 > 0, z2 > 0, j1, · · · , jn ∈ {1, 2}.
The function ϕ(z1, z2) is integrable on {z1 > 0, z2 > 0}, since

ψ(z1, z2) 6 −2−1b((z1ξ1)
α + (z2ξ2)

α).

Also ϕj1···jn(z1, z2) is integrable on {z1 > 0} for fixed z2 > 0 and on {z2 > 0} for fixed

z1 > 0.

Define f(x1, x2) for (x1, x2)
′ ∈ R2 as

(5.6) f(x1, x2) =
1

π2

∫ ∞

0

∫ ∞

0

ϕ(z1, z2) cos x1z1 cos x2z2 dz1dz2.

Then f(x1, x2) is continuous and f(x1, x2) = f(−x1, x2) = f(x1,−x2) = f(−x1,−x2).

If we prove

f(x1, x2) > 0,(5.7)

4

∫ ∞

0

∫ ∞

0

f(x1, x2)dx1dx2 = 1,(5.8)

4

∫ ∞

0

∫ ∞

0

f(x1, x2) cos x1z1 cos x2z2 dx1dx2 = ϕ(z1, z2) for z1 > 0, z2 > 0,(5.9)

then the proof is over, since (5.8) implies

(5.10)

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)dx1dx2 = 1

and (5.9) implies∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)e

i(x1z1+x2z2)dx1dx2(5.11)

= 4

∫ ∞

0

∫ ∞

0

f(x1, x2) cos x1z1 cos x2z2 dx1dx2 = ϕ̃(z1, z2), (z1, z2)
′ ∈ R2.
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So, our task is to prove (5.7)–(5.9). Let

(5.12) fz1(x2) =
1

π

∫ ∞

0

ϕ(z1, 0)−1ϕ(z1, z2) cos x2z2 dz2 for z1 > 0, x2 ∈ R.

By (5.5), ϕ(z1, 0)−1ϕ̃(z1, z2) satisfies the conditions of Theorem 1.1 as a function of

z2. Hence, for z1 > 0, z2 > 0,

fz1(x2) > 0,(5.13)

2

∫ ∞

0

fz1(x2)dx2 = 1,(5.14)

ϕ(z1, 0)−1ϕ(z1, z2) = 2

∫ ∞

0

fz1(x2) cos x2z2 dx2.(5.15)

We have used Proposition 4.4 for (5.13). Let

(5.16) gx2(z1) =
1

π

∫ ∞

0

ϕ(z1, z2) cos x2z2 dz2 for z1 > 0, x2 ∈ R.

Then gx2(z1) = ϕ(z1, 0)fz1(x2) > 0 and

(5.17)
∂2

∂z2
1

gx2(z1) =
1

π

∫ ∞

0

ϕ11(z1, z2) cos x2z2 dz2 for z1 > 0.

By virtue of (5.5), ϕ11(z1, z2) is positive and convex as a function of z2 > 0. Thus,

applying Theorem 1.1 to ϕ11(z1, 0)−1ϕ11(z1, z2), we obtain (∂2/∂z2
1)gx2(z1) > 0 from

(5.17). That is, gx2(z1) is convex for z1 > 0. Now we can apply Theorem 1.1 to

gx2(0)−1gx2(z1). The property (5.7) follows from this, since

f(x1, x2) =
1

π

∫ ∞

0

gx2(z1) cos x1z1 dz1.

Also we have

2

∫ ∞

0

gx2(0)−1f(x1, x2)dx1 = 1,(5.18)

gx2(0)−1gx2(z1) = 2

∫ ∞

0

gx2(0)−1f(x1, x2) cos x1z1dx1.(5.19)

From (5.14), (5.18), and gx2(0) = f0(x2), we get

4

∫ ∞

0

∫ ∞

0

f(x1, x2)dx1dx2 = 2

∫ ∞

0

f0(x2)dx2 = 1,

that is, (5.8). From (5.15), (5.19), and gx2(z1) = ϕ(z1, 0)fz1(x2), we get

4

∫ ∞

0

∫ ∞

0

f(x1, x2) cos x1z1 cos x2z2 dx1dx2 = 2

∫ ∞

0

gx2(z1) cos x2z2 dx2 = ϕ(z1, z2),

that is, (5.9). This completes the proof.
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[3] Dugué, D., Girault, M. (1955) Fonctions convexes de Polya, Publ. Inst. Statist. Univ. Paris 4,

3–10.
[4] Feller, W. (1971) An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed.,

Wiley, New York.
[5] Keilson, J., Steutel, F. W. (1972) Families of infinitely divisible distributions closed under mixing

and convolution, Ann. Math. Statist. 43, 242–250.
[6] Kojo, K. (2000) On two-dimensional symmetric stable distributions whose projections in some

range of directions are identical, Research Reports, Inst. Statist. Math. 127, 27–31. (In Japanese)
[7] Linnik, Yu.V. (1964) Decomposition of Probability Distributions, Oliver and Boyd, Edinburgh.
[8] Lukacs, E. (1970) Characteristic Functions, 2nd ed., Griffin, London.
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