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1 Introduction

1.1 Characterizations of selfdecomposable distributions

A distribution 4 on RY is called infinitely divisible if, for each positive integer
there is a distributiom, such that

H = Hn Hn* - HUn,
—_————

n

wheres denotes convolution. The class of infinitely divisible distributionsRsh
is denoted bylD = ID(RY). Let C,(2), z€ RY, denote the cumulant function of
p € ID, that is, the unique complex-valued continuous functioi®8mvith C,, (0) =

0 such that the characteristic functiiiz) of u is expressed agi(z) = €2, If

U € 1D, thenCy(z) is expressed as

Cu(2) = 5@ A2+ [ (€~ 11201 eny RV +i (0.2 (D)

Here (z,x) is the canonical inner product afandx in RY, |x| = (x,x)%/2, 11,
is the indicator function of the s¢tx| < 1}, A, is ad x d symmetric nonnegative-
definite matrix, called the Gaussian covariance matrig of, is a measure oR¢
satisfyingv, ({0}) = 0 and fza (|2 A 1)vy(dX) < oo, called the levy measure of
u, andy, is an element oRY. The triplet(Ay, vy, u) is uniquely determined by
u. Conversely, to any tripletA, v, y) there corresponds a uniquec ID such that
A=Ay, v =y, andy=y,. Throughout this articlé,, v, andy, are used in this
sense.

A distribution u onRY is calledselfdecomposablié, for any b > 1, there is a
distribution uy, such that

A2 =[b 'z, zeR™ (1.2)

Let L = L(RY) denote the class of selfdecomposable distribution®brit is char-
acterized in the following four ways.

(a) A distributionu onRY is selfdecomposable if and onlyjif € ID and its Levy
measure/,, has a radial (or polar) decomposition

Vu(B) :/S)\(dé)/omlg(rf)r‘lké(r)dr (1.3)

for Borel setsB in RY, whereA is a finite measure on the unit sphede- {&
RY: |&| =1} (if d = 1, thenSis a two-point se{1, —1}) andkg (r) is a nonnegative
function measurable i& and decreasing and right-continuous .ifSee Proposition
3.1 for exact formulation of radial decomposition.)
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(b) Let {Z: k= 1,2,...} be independent random variables BA andY, =
S 1 Zk. Suppose that there abg > 0 andy, € RY for n=1,2,... such that the
law of bnY, + ¥ weakly converges to a distributignasn — « and that{b,z: k=
1,...,n;n=12,...} is a null array (that is, for ang > 0, max<x<nP(|bnZy| >
€) — 0asn— ). Thenu € L. Conversely, any! € L is obtained in this way.

(c) Givenp € ID, let {x{‘”: t > 0} be a levy process orRY (that is, a
stochastic process continuous in probability, starting at 0, with time-homogeneous
independent increments, with cadlag paths) having distribyticst time 1. If
f‘x‘>1log|x|p(dx) < oo, then the improper stochastic integrfgl e*sdxép) is de-
finable and its distribution

H= ( /O o edeé")) (1.4)

is selfdecomposable. Het#’(Y) denotes the distribution (law) of a random el-
ementY. Conversely, anyu € L is obtained in this way. On the other hand, if
Jix>1109[x|p(dx) = e, then Io- e-sdx? is not definable. (See Section 3.4 for
improper stochastic integrals.)

To see thau of (1.4) is selfdecomposable, notice that

00—

= (o) _ [l9P ) )
/ e Sdx® = / esdX? + [ esdxP =1+ 1,
0 0 logh

I; andl, are independent, and
I, = - e 'Ogbfsdx(p ) —pt - e SdY.P)
2 0 ogb+s 0 s

where{Y{"'} is identical in law with{X{"’}, and henceu satisfies (1.2).

(d) Let {Y;: t > 0} be an additive process dk¢, that is, a stochastic process
continuous in probability with independent increments, with cadlag paths, and with
Yo =0. If, forsomeH > 0, itisH-selfsimilar (that is, for ang > 0, the two processes
{Yq: t >0} and{a"¥;: t > 0} have an identical law), then the distributigrof Y;
isinL. Conversely, for any € L andH > 0, there is a proced¥; : t > 0} satisfying
these conditions an&’(Y;) = p.

Historically, selfdecomposable distributions were introduced ByyL[18] in
1936 and written in his 1937 book [19] under the name “lois-limites”, to charac-
terize the limit distributions in (b). &vy wrote in [18, 19] that this characterization
problem had been posed by Khintchine, and Khintchine’s book [16] in 1938 called
these distributions “of class”. The book [9] of Ghedenko and Kolmogorov uses
the same naming. l&ve’s book [20] uses the name “selfdecomposable”.

The property (c) gives a characterization of the stationary distribution of an
Ornstein—Uhlenbeck type process (sometimes called an Ornstein—Uhlenbeck pro-
cess driven by a&vy processjV;: t > 0} defined by
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! (0)
Vi :e*‘v0+/ e tdx?,
JO

whereVy and {Xt(p): t > 0} are independent. The stationary Ornstein—Uhlenbeck
type process and the selfsimilar process in the property (d) are connected via the
so-called Lamperti transformation (see [11], [26]). For historical facts concerning
(c) see [33], pp. 54-55.

The proofs of (a)—(d) and many examples of selfdecomposable distributions are
found in Sato’s book [39].

The main purpose of the present article is to give two families of subclasses of
ID, with two continuous parameters, related.faising improper stochastic integrals
and extending the characterization (c)Lof

1.2 Nested classes of multiply selfdecomposable distributions

If ueL,then, for anyb > 1, the distributionuy, in (1.2) is infinitely divisible and
uniquely determined by andb. If 4 € L andpy, € L for all b > 1, theny is called
twice selfdecomposableet n be a positive integer 3. A distributionu is called

n times selfdecomposablé ¢ € L and if up is n— 1 times selfdecomposable. Let
L1o=L10o(RY) = L(RY) and letLn o = Lno(RY) be the class ofi times selfdecom-
posable distributions oRY. Then we have

IDDL=L10DLyogDL3pD:--. (1.5)

These classes and the clasgRRY) in Section 1.4 were introduced by Urbanik [52,
53] and studied by Sato [37] and others. (In [37, 52, 53] the dlagds written as
Ln_1, but this notation is inconvenient in this article.)

An n times selfdecomposable distribution is characterized by the property that
u € 1D with Lévy measure,, having radial decomposition (1.3) in (a) wii(r) =
hg (logr) for some functionhg (y) monotone of orden for eaché (see Section
1.5 and Proposition 2.11 for the monotonicity of oragr In the propeerty (b),
U € Lno is characterized by the property that(Zy) € Ln_10 fork=12.... In
(c), 1 € Lnpis characterized bp € Ln—10in (1.4). A direct generalization of (1.4)
using exg—sY/") or, equivalently, exp—(n!s)1/") in place ofe S is also possible.
In (d), i € Lno if and only if, for anyH, the corresponding proce$s;: t > 0}
satisfiesZ (Y; —Ys) € Ln—1,0 for 0 < s< t. The proofs are given in [12, 25, 33, 37].
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1.3 Continuous-parameter extension of multiple
selfdecomposability

In 1980s Nguyen Van Thu [49, 50, 51] defined a continuous-parameter extension
of Lno, replacing the positive integer by a real numbemp > 0. He introduced
fractional times multiple selfdecomposability and used fractional integrals and frac-
tional difference quotients. On one hand he extended the definitionimies self-
decomposability based on (1.2) to fractional times selfdecomposability in the form
of infinite products. On the other hand he extended essentially the formula (1.4) in
the characterization (c), considering ité\ly measure.

Directly using improper stochastic integrals with respectéwy processes, we
will define and study the decreasing claskgg for p > 0, which generalize the
nested classels,g for n=1,2,.... Thus the results of Thu will be reformulated
as a special case in a family, o with two continuous parameters<Qp < « and
—oo < o < 2. The definition ol o will be given in Section 1.6.

1.4 Stable distributions and clads,

Let u be a distribution oiRY. Let 0< a < 2. We say thay is strictly a-stableif

u € 1D and, for anyt > 0, [i(2)! = [i(tY92), ze RY. We say thay is a-stableif

u € ID and, for anyt > 0, there isy € RY such thafli(2)! = fi(tYz) exp(i(yt,2)),
ze RY. (Whenp is ad-distribution, this terminology is not the same as in Sato [39].)
Let 8% = 6% (RY) andG 4 = G4 (RY) be the class of strictly-stable distributions
onRY and the class ofr-stable distributions oY, respectively. Lets = G(RY)
be the class of stable distributions BA. That is,& = (Jg. 4> Sq. A distribution
ue€lIDisin &;ifand only if v, = 0, that is,u is Gaussian. A distributiop € ID

is in &4 with 0 < a < 2 if and only if A, = 0 andv, has a radial decomposition
(1.3) with ke (r) = r=9. A distribution it € &4 with 1 < a < 2 is in &% if and
only if 4 has mean 0. A distributiop € & is in &9 if and only if v, has a radial
decomposition (1.3) wittk (r) = r~1 and [&€A(d€) = 0. A distributionp € G4
with 0 < a < 1isin&Y if and only if it is driftless in the sense that

C“(z):/S/\(dé)/om(ei<rf*z>—1)r‘“‘1dr, zeRY.

Lots of results are accumulated on stable distributions and processes. To mention
one of them, the asymptotic behavior of the densityucf Ga(Rd), d>2,ac
(0,2), sensitively depends on the radial direction and exhibits amazing diversity, as
Watanabe [54] shows.

Let Lo, = Lo(RY) denote the smallest class that is closed under convolution and
weak convergence and contai®$RY). This class was introduced by Urbanik [52,
53] and reformulated by Sato [37]. if € L, thenu € ID with Lévy measurey,
being such that
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_ * —-a-1
Vu(B) = (O’2>I'(da)/sx\a(df)/o 1g(ré)r91dr (1.6)

for Borel setsB in RY, wherel™ is a measure on the open interya)2) satisfying
/( (@ (2-a)r(da) <e L7
02

and{As: a € (0,2)} is a measurable family of probability measuresomhis I is
determined by, andA, is determined by, up toa of I -measure 0. Conversely,
if a measurey onRY is expressed by the right-hand side of (1.6) with sdmand
Aq satisfying the conditions above, then, for alandy, (A, v,y) is the triplet of
somey € L.

We will also use the cladsk = LE(RY) for a Borel subseE of the open interval
(0,2); this is the class oft € L., whose measurE is concentrated oE.

Another characterization df.,(RY) is thati € Lo, if and only if 4 € L andv,
has a radial decomposition (1.3) wikia(r) = hg (logr) whereh; is a completely
monotone function oiR for eaché. Hence we have

Le= [] Lno- (1.8)
n=12,...

Thus distributions in.,, are sometimes calleztbmpletely selfdecomposable
Zinger [57] introduced a subclas®; (r being a positive integer) of the class
L(R); it is defined to be the class of limit distributiopsin (b) of Section 1.1 such
that{.%(Z): k=1,2,...} consists of at most different distributions orR. It is
known that#?; = 6(R) and thaty € & if and only if i is the convolution of at
most two stable distributions. In [57] a beautiful explicit description of tiéeyt
measures of distributions i#; is given and it is shown that a distribution ##,
with r > 3 is not necessarily the convolution of stable distributionsRorAny u
in &, is the convolution of at mogt semi-stable distributions of a special form.
However, no other characterization &4 exists, as far as the author knows.

1.5 Fractional integrals

The key concept to connect the representationésfilmeasures for the clasgRY)
and that for the clask.(RY) is monotonicity of ordem € (0,). It is defined by
using the notion of fractional integrals or Riemann-Liouville integrals. Let us write

e=r(p), cp=1/I(p)

throughout this article. The fractional integral of orger- O of a functionf(s) on
R in a suitable class is given by
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° -1
& [ (s-1)PHH(5)ds

which is the interpolation (¥ p < «) and extrapolation (& p < 1) of then times
integration

/rmds“/:ds“1"‘/:f(51)d51—(n_11)!/rm(5—r)”1f(s)ds

However, we need to use fractional integrals of measures. Our definition is as fol-
lows.
Let
Ry = [0700)7 Rj— = (0700)

and#(E) for the class of Borel sets in a spad€eA measures is said to be locally
finite onR [resp.R}] if g([a,b]) < o for all &, b with —c0 < a < b < o [resp.
0<a<b< ] Letp>0.Forameasure onR [resp.RS ], let

G(E) =cp /E dr /( rw)(sfr)p‘la(ds), EcZ[R) [resp.Z(R%).  (L9)

Let D(1P) [resp.@(lf)] be the class of locally finite measureson R [resp.RRq ]
such thaw is a locally finite measure dR [resp.R¢ ]. Define

IPo(E)=0(E), EcB(R) [respIPo(E)=0(E), Eec B(R%)]

for 0 € D(IP) [resp.®(19)]. ThusIP andl? are mappings from measures to mea-
sures orR andR¢,, respectively®D (IP) and®(1?) are their domains.

We call a[0, »]-valued functionf (r) onR [resp.RS ] monotone of order pnR
[resp.R:]if

f(r)= cp/(r‘m)(s—r)pfla(ds) (1.10)

with someo € D(1P) [resp.D(10)]. As will be shown in Example 2.17, functions
monotone of ordep € (0,1) have, in general, quite different properties from func-
tions monotone of ordep € [1,0). We call f(r) completely monotonen R [resp.

RS ] if it is monotone of ordemp on R [resp.R3] for all p > 0. This definition of
complete monotonicity differs from the usual one in that positive constant functions
are not completely monotone. Typical completely monotone functiofs amdR .
aree " andr~ 9 (a > 0), respectively.

The properties of fractional integrals of functions are studied in M. Riesz [32],
Ross (ed.) [35], Samko, Kilbas, and Marichev [36], Kamimura [15], and others.
Williamson [56] studied fractional integrals of measuredignfor p > 1 and intro-
duced the concept gi-times monotonicity. But we do not assume any knowledge
of them.

In Sections 2.1-2.3 we build the theory of the fractional integral mappihasd
IE for p € (0,) from the point of view that they are mappings from measures to
measures. A basic relation is the semigroup propéity= 1°P+9 and11P = 1P*9,
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An important property that both® and|? are one-to-one is proved. The relation
between the theories dR andR? is not extension and restriction. We need both
theories, as will be mentioned at the end of Section 6.2.

1.6 Classe¥p o andL 4 generated by stochastic integral
mappings

The formula (1.4) gives a mappirg from p € ID(RY) to u € ID(RY). Thus

Pp— & (/Om e-3d><s<”>). (1.11)

The domain of® is the class ofp for which the improper stochastic integral in
(1.11) is definable.

For functionsf (s) in a suitable class, we are interested in the mapgidrom
p € 1D to u € ID defined by

uztbfp:.,i”(/owf(s)d)(s(p)). (1.12)

The domain®(®;) is the class op for which the improper stochastic integral in
(1.12) is definable. The range is defined®By®;) = {Psp: p € D(Ps)}.
Let us consider three families of functions. Foz(p < 0 and—o < a < « let

1
g‘p,a(t):cp/ (1—uPluoldy 0<t<1, (1.13)
t
1
jpat) =Cp | (~loguP @i 0<t<1 (1.14)
t
ga(t):/ u%leldy, O<t<oo, (1.15)
t

and apg = Gp.a(0+), bpa = jpa(0+), 80 = ga(0+). If a < 0O, thenayq =
a/Tp-a,bpa=(—a) P,andag =I_q4.If a >0, thenay g =bp g =aq = . Let
t = fpa(9), Ipa(s), and f4(s) be the inverse functions &f= gp o (t), jp,«(t), and
Ja (1), respectively. Whem < 0, extendfp o (s) for s> ap q, lpa(S) for s> bp g,
and fy (s) for s> a, to be zero. Define

‘Dp,a == (Df_p,a’ /\p7a == (D'p.a? q‘la = cpfa

Sato [42] studied the mappiri, and the mapping@g o = Py 0~ < B<a<oo,
for the inverse functiorfg 4 (s) of the functiongg 4 (t) defined by

1
gﬁ,a(t):ca,ﬁ/t (1-u)@F-lualdy o<t<l.
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To make parametrization more convenient, we @gg = ®y_pa. FOr ®pq, Apa,
andY¥, the domains will be characterized. In the analysis of the domains, asymp-
totic behaviors off, o (S), Ip.a(S), and fq (s) for s — o are essential. The behaviors

of fpa(S) and f,(s) are similar, but the behavior ¢f o (s) is different from them.

If a>2, then®(Ppy) = D(Apa) =D(¥) = {&}. So we will only consider

—o0 < a < 2. Define

Kpa = Kpa(RY) = R(Ppa), (1.16)
Lpa = Lpa(RY) = R(Apa). (1.17)

Itis clear thaigy o (t) = j1,4(t), and hence

Do =Ava, Kig=Lig for—eo<a<2 (1.18)

Sincegdio(t) = j1o(t) = —logt, 0 <t <1, andfio(s) = l10(s) = €5, s> 0, we
have B

Pro=Npo=®, Kipo=Lio=L (1.19)

SoK, o andL, o give extensions, with two continuous parameters, of the ¢tlass
selfdecomposable distributions. Sirgg(s) = exp(—(+15)YP), s> 0, the class
Lp,o coincides with the class of times selfdecomposable distributionspifis an
integern.

The following are some of the new results in this article. For argnd p with
—oo < a < 2andp> 0, anyu € K, o has Levy measure, having a radial decom-
position

Vu(B) :/SA (dé)/owlg(rf)r‘“‘lkg(r)dr (1.20)

with kg (r) measurable irié,r) and monotone of ordgg on RS inr, and anyu €
Lp,a has Levy measure, having a radial decomposition

Vu(B) = /5)\ (dE)/Ow 15(r&)r - he (logr)dr (1.21)

with hg (y) measurable ifé,y) and monotone of ordgsonR iny. If —0 < a <
1, then this property ofy, characterizepy, andLpg. If 1 < a < 2, then this
property ofv,, combined with the property of mean O (that fgq || (dX) < o and
Jra X (dx) = 0) characterizeK 4 andL o. We will introduce the notion of weak
mean of infinitely divisible distributions in Section 3.3.df= 1, then the property
above ofv;, and the property of weak mean 0 characteKgg; the case ot is
still open. For each fixed, the classe&, andLp 4 are strictly decreasing gs
increases and at the limit there appear connections it ) and with the class
L., of completely selfdecomposable distributions. Namely, define

Koo, = r} Kpa; Lea= r} Lpa- (1.22)

0<p<o O<p<oo
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It will be proved that

Koa =R(Y) for—o<a<2, (1.23)
Lwg =Le for—c <a <0, (1.24)
Log =LE withE=(a,2) for0<a <1, (1.25)

Log =LEN{U: [raxu(dx) =0} withE=(a,2)forl<a<2  (1.26)

The case of 1 is open.

Combined with the results in [42], the following will be shown. For anyith
—o0 < a < 2, anyu € R(¥) has Llevy measure, satisfying (1.20) in whiclkg (r)
is measurable ité,r) and completely monotone @&, inr. If —o < o < 1, then
this property ofv, characterizeRR(%;). If 1 < a < 2, then this property o, and
the property of mean O characteri¥¢¥, ). If a = 1, then this property o¥, and
the property of weak mean O charactefizg¥ ).

We will further establish relations among the classes and among stochastic inte-
gral mappings. The transformations dhly measures corresponding®p, denoted
by ®t, will be examined, which gives the basis of the analysis of the ranges.

Along with the usual improper stochastic integrats, we will use absolutely
definable improper stochastic integrals and essentially definable improper stochastic
integrals introduced in [41, 42, 43] (see Section 3.4). The do®&if®;) of the
former is a subclass @ (®s ) and the domai®(®s) of the latter is a superclass of
D(®s). Corresponding to them the absolute raftf @¢) and the essential range
R®(®y) are introduced. Fof = f, 4 andf =1, 4 they defineK? ,, KS 4, LS ;. and
L}~ These classes not only help to study the clasggs andLpq, but also are
interesting classes themselves.

Rosinski's study [34] of tempered stable processes concernsétng firocesses
associated with distributions IR®(4;), 0 < a < 2, with Gaussian part zero.

1.7 Remarkable subclasses i

We have already mentioned the subclagsés, o, G, Le, Kpa, andLp ¢ 0f ID(RY).
Let us give the definitions of, B, andU.

Let us callVx an elementary -variable [resp. elementary mixed-exponential
variable, elementary compound Poisson variable]R8iif x is a non-random, non-
zero element oRY andV is a real random variable havirfg-distribution [resp. a
mixture of a finite number of exponential distributions, compound Poisson distribu-
tion whose jump size distribution is uniform on the inter{@&la] for somea > 0].

LetT = T(RY) [resp.B = B(RY), U = U (RY)] be the smallest class of distributions
onR¢ closed under convolution and weak convergence and containing the distribu-
tions of all elementary -variables [resp. elementary mixed-exponential variables,
elementary compound Poisson variables]&éh We call T the Thorin class B the
Goldie-Steutel-Bondesson clasndU theJurek class It is known that
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T = R(W), (1.27)
B=R(Y.1), (1.28)
U=R(® 1) =Ky 1. (1.29)

See [1, 3, 13]. ConcernirgandU, notice thatf_;(s) = —logs, 0 < s< 1, so that

1
WYip= Yp:.ﬁf(/o (—Iogs)dXs(p)> )

whereY is the mapping introduced by Barndorff-Nielsen and Thorbjgrnsen [3], and
thatf; _1(s)=1-s,0<s<1, sothat

Oy 1p=2 (./01(1—s)dxs<”)) =2 (/Olsd%p)) ;

which is the mapping of Jurek [13]. Noting (1.23), we see that

T =Ko, (1.30)
B =Ko 1. (1.31)

Historically, the class oft € T(R) on the positive axis was introduced by Thorin
[47, 48] in the naming of generalizdd-convolutions (GGC), to show that Pareto
and log-normal distributions are infinitely divisible. The clasguof B(R) on the
positive axis was introduced by Bondesson [4] in the naming of generalized con-
volutions of mixtures of exponential distributions (g.c.m.e.d), after Goldie showed
the infinite divisibility of mixtures of exponential distributions and Steutel found the
description of their Bvy measures. The present formulatiom¢RY) andB(RY) is
by Barndorff-Nielsen, Maejima, and Sato [1]. The clakwas introduced by Jurek
[13] as the class dé-selfdecomposable distributions. Our formulatiorqiRY) is
new; we can prove its equivalence to the definition of Jurek similarly to the proof of
Theorem F of [1].

See Bodesson [5] and Steutel and van Harn [46] for examples and related classes.
Especially, many examples h(R) are known. To mention one of them, the dis-
tribution of Lévy's stochastic area of the two-dimensional Brownian motion has
density ¥/ (mrcoshx) and belongs td@ (R) with Lévy measurelx/(2|xsinhx|).

2 Fractional integrals and monotonicity of order p > 0
2.1 Basic properties

Fora € R, letMI(R) [resp.Mng (R3 )] be the class of locally finite measureson
R [resp.R3] such thatf; ., r*o(dr) <. ForB € R, let Emg (R2) be the class of



12 Ken-iti Sato

locally finite measures on R} such thatfq, rfo(dr) < eo. Let It = M-(RY)

be the class of measureon Rd satisfyingv({0}) = 0 and fra (|X|> A 1)v(dX) < .
That is, 9 (RY) is the class of Bvy measures of infinitely divisible distributions
onRY. The wordsincreaseanddecreasere used in the non-strict sense.

In Section 1.5 we defined the mr;1ppir1gj§andl+p for p > 0 and the notion of
monotonicity of ordeip. Let us begin with the following remarks. (i) ffis mono-
tone of orderp > 0 onR, then the restriction of to RS is monotone of ordep on
RS . (i) If fis monotone of ordep > 1, thenf is finite-valued and decreasing. For
p = 1 this is obvious. Fop > 1 this follows from Corollary 2.6 to be given later.
(iii) If f is monotone of ordep € (0,1), thenf is finite almost everywhere, but
possibly takes the infinite value at some point dnid not necessarily decreasing.
See Example 2.17 (a), (b), and (d).

Proposition 2.1.Let p> 0. It holds that

D(1P) =MmEH(R), (2.1)
D(1F) = MEH(RS). (2.2)

Proof. Let o be a locally finite measure dR [resp.RS]. Let —o <a<b < o
[resp. O< a < b < «]. Theno of (1.9) satisfies

d([a,b]) 7cp/ dr/ o(ds)
roo

bAs
:cp/ a(ds)/ (s—r)P~1dr
() a

= Gpi1 /(b_m><<s—a>P—<s—b>p>a<ds>+cp+1 /(ab]<s—a>*’o<ds>,
which is finite if and only if f; ) sP~1o(ds) < o, since
(s—a)° ~ (s—b)° ="((1-a/s)" — (1~b/3)") ~ p(b— )"
ass— oo, 0

Corollary 2.2. If 0< g< p, then®(IP) c ®(19) and®(1P) c D(19).

Proposition 2.3.Let p> 0. Leta > —1andf > 0.

(i) Leto € D(IP) [resp.D(I?)]. Then Pa € ME(R) [resp. Po € MI(RY)] if
and only ifo € MEY(R) [resp. 9B (RS.)].

(i) Leto € D(1P). Then Po € MY (R.) if and only ifo € IME (R3).

(ii)) Leto € D(IP). Then|_,, 5, €' (IP0)(dr) < «if and only if f_, o e°°a(ds)
< oo,

Assertion (i) is the right-tail fattening property bt [resp. tail fattening property
of 1P]. Assertion (i) is the head thinning property Id¥.
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Proof. (i) Let & = IPo [resp.I? g]. We have

/ r O'dl’—Cp/ "dr/ o(ds)
1 (r,00)
=c ads/r s—r)P1dr
o [, 009 [ 150

1
:c/ sp+"0(ds)/ u?(1—u)Ptdu.
?J 1) 1/s

Hence/ ) r?a(dr) < e if and only if [i; . SP* o (ds) < e
(i) We have

1 1
/0 r“(lfo)(dr):cp/o r“dr/(rym)(s—r)pfla(ds)
:cp/( . o(ds)/omsr"(s—r)”‘ldr
—c /(0,1] f(s)0(ds) +cp / g(9)o(ds)

J(1,00)
where
S
f(s):/ rf(s—r)P~ldr for0<s<1,
0
1
g(s):/ rf(s—r)P~dr fors> 1.
0
Since N
f(s):s‘”p/ u¥(1—u)Ptdu
Jo
and

"1/s
g(s) = ‘”p/ w(1-uPtdu~ (a+1)"1P 1 s— o,
0

and sincef(; sP~1g(ds) < o, we obtain the assertion.
(iif) We have

/eB’Ipa dr—cp/ eBdr/ (s—1)P1a(ds)

/ ds/ e (s—r)P1dr

Cp/(ioo:o] f(S)U(dS)+cp/(0’w)g(s)o(ds),

where

/ ef(s—r)P~ldr fors<o,

13
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g(s):/_ieﬁr(s—r)pfldr fors> 0.

Notice that -
f(s) = eﬁs/ e PUuP~ldu
Jo
and °
a(s) = eﬁs/ e PUPldu~ B 1Pt s oo,
S
Using J{1 «) sP~1g(ds) < «, we can show the result. O

Proposition 2.4.For any p> 0 and g> 0,
9P =Pt and 219 =1P"9 (2.3)

As always an equality of mappings includes the assertion that the domains of both
hands are equal.

Lemma 2.5.Let p>0and g> 0. If o € D(IP) [resp.®(I1P)] and G = IPo [resp.
1 a], then

(r—uw)ta(dr) = cpiq / (s—u)Pt9-1g(dy) (2.4)

. (U0 (u,)

)
forue R [resp.R%].

Proof. We have
' F— w0 dn = [ cor—u)ftdr [ co(s—r)Plo(ds
oy ot =500 = [ el —uar [ ep(s—n)Po(ay

= CpCq ” o(ds) /us(r —u)9(s—r)P1dr

)
1
:cpcq/< )(s—u)pﬂ*la(ds)/ (1—v)9 P 1dy
u,c0 0
(by change of variableg= (s—r)/(s—u))
= Cpia [ (5-WP' Ho(ds),
u,00

which is (2.4). O

Proof of Proposition 2.4We prove the first equation in (2.3), but the proof of
the second one is formally the same. The domaim%¥ is defined to be{o €
D(1P): 1Pg € D(19)}. It follows from Propositions 2.1 and 2.3 (i) that
ceD(9P) & oeMEYR), IPoemdY(R)
& ogembrai(R)
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&  oeD(IPH).

If o € MET1(R), then Lemma 2.5 shows thdfl(1Po))(du) = (1IP*90)(du). O

Corollary 2.6. Let0 < q < p. If a function f is monotone of order p d& [resp.
R ], then f is monotone of order q d[resp.RS |.

2.2 One-to-one property

We will prove an important result thaf andlf are one-to-one. We prepare auxiliary
mappingsD* anqu+ and two lemmas, suggested by Kamimura [15].

Definition 2.7. Let0 < g < 1. Let®(DY) [resp.® (DY )] be the class of locally finite
measurep onR [resp.R< | absolutely continuous with densitysy such that

/m(s— )9 1g(s)—g(r)/ds<« fora.e.reR [resp.R?] (2.5)

and that the signed measypedefined by

p(n) = (aes o [ (s Hg(s) - ar))ds) ar (26)
has locally finite variation ofR [resp.RS ]. Define

Dip=p [resp.Dlp=p] 2.7)
for p € (DY) [resp.D(D1)].

The reason for introducing the mapping$ and Di is seen from the following
lemma.

Lemma 2.8.Let0< q< p< 1andleto € D(IP) [resp.D(1?)]. Then Po € (DY)
[resp. Po € ®(D?)] and

(DYIPg)(dr) = rlp- pr;jq (9Cpq— 1) (1P~ %a)(dr) (2.8)

[resp. the same equality withiDI?, and IP"%in place of I¥, IP, and IP~9], where
1
Coq= / (1—u) 1P 1= 1)du (2.9)
0

Proof. Let p = IPa [resp.1?a]. Then p(ds) = g(s)ds with g(s) = cp Jisoo) (U=
s)P~1g(du). Fors > r we have

9(s) —g(r)
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cp/< u—rP-lo du)+cp/( )((u—s)Pfl—(u—r)Pfl)o(du)
IS
S
cp/ u-nPlg )+(1—p)cp/ a(du)/ (u—v)P~2dv.
(rs] (s) r

Let
le/w(s—r)*qflds/ (u—r)P~1g(du),
r * (I’,S]
© S
b= (17p)/ (sfr)‘q‘lds/( >cr(du)/ (U—v)P~2dv.
r S,00 r
Then

| (s Hg(s) — gin)lds < p(d1 + ).

Sinceo € D(1P~9) [resp.D (17~ %)], we have

Jl=/(m)(u—r)pfla(du)/uw(s—r)*qflds

—q ( )(u—r)F”q 'o(du)<w fora.er € R[resp.R:],
r,00

b= (1-p) '/(.r’m)

o) [ ot [u-vP ey [t

o(du) ./r'u(u—v)pfzdv/\;u(s— r)-9-1ds
o) [ otaw [t [ umvP sty
—(1-p) /(r’w) o(du) ./Olt*pdt/ot(u*r)wpfl(u— r )~ Tdw

- (1p)/(r,w)(ur)p‘q‘la(du)/Oit‘pdt/otxp‘l(lx)‘lq‘ldx
:(1—p)/(r’w)(u—r)pqulo(du)l/o xp’l(l—x)*qfldx./x tPdt
:cfp,q/mm)(u—r)r’*q lo(du) < fora.er e R [resp.R?],

where L
' 0

and the finiteness @ q is clear sincél—x) "9 1(1—x1"P) ~ (1- p)(1—x) % as
x 7 1. We have thus shown (2.5) and

=1 (9~ glr))ds = ey -3
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= cp(Cpg—0q 1) /( oD P01 (du).

Hencel Po € ®(DY) [resp.1?o € ®(D?)] and

(©%1%)(e) = (er-cen(aCoa—1) |
r,co

(u—rP 1o u)> dr

onR, and similarly onR¢ 0
Lemma 2.9.Let p> 0 and leto € D(IP) [resp.®(1?)]. Then,
19 — o vaguely orR resp. lo — o vaguely orR? ] (2.10)
as g/ 0, that is, for all continuous functions f with compact suppoiRifresp.R? ],
Jf(s)l9(ds) — [ f(s)a(ds) [resp.[ f(s)lSa(ds) — [ f(s)o(d9)] (2.11)
asqlO.

Proof. We give the proof in the cadR, but the cas& is similar. First recall that
o € D(IP) implieso € ©(1%) for 0 < q < p. Assume thaf is nonnegative, contin-
uous with support ia, b] for somea < b. It is enough to show (2.11) for sudh
Notice that

/Rf(s)lqa(ds):/Rf(r)dr rm)cq(s—r)qfla(ds):/qu(s)o(ds),

I,

where .
9q(5)=/ Cq(S—r)qflf(r)dr.

We claim that
%(s) — f(s), alo (2.12)
for se R. We havegq(s) = 0= f(s) for s< a. Fix s> a. Let g be such thaa <

s—g< s Then,as | 0,
lgq(s) — f(s)| < cq/&q(S— NI (r)dr+cq ) (s—0)4 L f(r)— f(s)[dr
a s—q

_|_

S

cq/ (s—r)qldr—1’ f(s)
s—q

:J1+J2+‘]37

sq
st [ e =l (- % - ) 0

where||f|| = maxer f(S),
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J2 < max |f(r) - f(s)|cqs19? = O,
refs—q.s

Jh= |Cq+1qq — 1‘ f(S) — 0.

This proves (2.12). 1§ > a, then

() < cll 1 | (51)7 0 = gy (s—) < consi(s—a) v 1)

forO<qg<p. lf s>b+1,then
b
9a(s) < qulfl\/ (s—r)1dr < cq|f[|(b—a)(s—b)** < consis—b)P*
a

for 0 < g < p. Now, sinceo € MBE~1(R), we can use the dominated convergence
theorem and obtain

[ sals0(d9 — [ f(go(ds.  aqlo
R R
completing the proof. O

Theorem 2.10.For any p> 0, IP and LE are one-to-one.

Proof. Assume thaip < 1. Suppose thati, 02 € D(1P) satisfylPoy = IPoy. Let
0 < g < p. By virtue of Lemma 2.8)Pg; € ®(DY) for j = 1,2 and (2.8) holds
for o = o1, 02. We haveD9Pg; = DYIPoy. If qCyq— 1 # 0, then it follows that
[P~9g1 = I1P~90,. From the definition (2.9)Cp q is positive and strictly increasing
with respect tay. Hence, eitheqC, q—1 # 0 for all q € (0, p) or there isp € (0, p)
such thatyCpq—1# O forallqe (0,p) \ {do}. Thus

9Coq—1#0 forallqe (0, p) sufficiently close top. (2.13)

Hence
IP~9g, = 1P 9, forall g€ (0, p) sufficiently close tap.

Now, lettingq 7 p and using Lemma 2.9, we obtain = 0. It follows thatIP is
one-to-one for G< p < 1. Now, using Proposition 2.4, we see thiis one-to-one
if p=np with a positive integen and 0< p’ < 1. Hence P is one-to-one for any
p > 0. The proof fonf is similar. O

2.3 More properties and examples

Whenp is a positive integer, we have the following characterization. This is a result
of Williamson [56]. It is given also in Lemmas 3.2 and 3.4 of Sato [37] based on
Widder's book [55].
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Proposition 2.11.(i) A function f(r) onR [resp.R} ] is monotone of ordet if and
only if itis decreasing and right-continuous @resp.RS | and tends t@ as r — oo.

(i) Let n be an integep 2. A function f orR [resp.R¢ | is monotone of order n
if and only if

f(r) tends to0 as r — o and is n— 2 times differentiable ofR
[resp.RS ] with (1)) () > 0for j =0,1,...,n—2, and with (2.14)
(—1)"2£("-2) peing decreasing and convex.

Corollary 2.12. Let n be an integer 1. Suppose that f is n times differentiable on
R [resp.R3]. Then f is monotone of order n if and only 1)1 f()) > 0onR [resp.
RS ]for j=0,1,...,n,and f(r) - 0asr— oo,

Thus the concept of complete monotonicity obn RS coincides with that in
Widder [55] and Feller [8] except the condition that lim, f(r) = 0. Integral rep-
resentation of a completely monotone functionRsh (as the Laplace transform of
a measure oiR?) is obtained from Bernstein's theorem. A completely monotone
function onR is also represented by the Laplace transform of a measuRg on

Proof of Proposition 2.11In this proof we consider the cag In the caseR?,
replaceR by RS.

(i) Recall thatf is monotone of order 1 oR if and only if f(r) = [ ., o(ds)
for someo € MY (R), hence if and only iff (r) is finite, decreasing, and right-
continuous orR and tends to 0 as— oo.

(i) Let n> 2. A function f is monotone of ordem on R if and only if, for some
o € ML(R),

0=/ e o(dy - [ o0 [ (s U

. X . N
- */(f7°°) du-/(u,oo) m(s_ u) ZU(dS).

If f is monotone of orden onR, thenf(r) — 0 asr — o, sincef is monotone of
order 1 orR. If f is monotone of order 2 oR, then

£(r) :/(rm) o((u,®))du (2.15)

and hencef is decreasing and convex. Converselyf (f) is decreasing, convex,
and convergent to 0 as— oo, thenf is written as in (2.15) with some € 9L (R)
and hencd is monotone of order 2 oR.

Now letn > 3 and suppose that assertion (ii) is true with 1 in place ofn. If f is
monotone of orden onR, theng(u) = [, « ﬁ(s— u)"2g(ds) is monotone of
ordern— 1 onR and, a fortiori, continuous and hened’(r) = g(r), which shows
that (2.14) is satisfied. Conversely, suppose fredtisfies (2.14). Ther f'(r) — 0
asr — oo, since otherwisd (r) goes to—o asr — c. Hence (2.14) is satisfied with
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—f’in place off and withn— 1 in place ofn. Hence

() = /(u’m) (n_lz)! (s—u)"20(ds)

for someo € ML ?(R). Since— f/(u) is continuous and sinci&(r) — 0 asr — o,
we havef (r) = [” f’(u)duand hence

f(r)= /(r,oo> (n—ll)! (s—r)"1o(ds).

As (2.14) implies thatf is locally integrable orR, o belongs to®(1") and f is
monotone of orden onR. O

Let us give some necessary conditions fdo be monotone of ordg.

Proposition 2.13.Suppose that f is monotone of order pRrresp.R ] for some
p > 0and that f is not identically zero. Then:

(i) fis lower semi-continuous dR [resp.R? .

(i) Either f(r) > Oforallr € R [resp.RS ] or there is ac R [resp.RS ] such that
f(r)>0forr <aand f(r) =0forr > a.

(iii) In the case ofR, liminf (f(r)/Ir|""Y) > 0.

(iv) In the case ofR?, Iimlionf f(r)>0.
r

Proof. The functionf satisfies (1.10) for some € 9B ~1(R) [resp.9mB (RS )]
with g # 0.
(i) Using Fatou’s lemma, we see

liminf f(r') > cp/liminf(l(r/m(s)(s— r')P~Ha(ds)

r'—r

_ cp/(rﬂm)(s—r)pfla(ds) — f(r),

that is, f is lower semi-continuous.
(ii) If f(ro) > O for somerg, then f(r) > 0 for all r < ro, becausef .., (s—

ro)pfla(ds) > 0 shows that there is a poigj in the support ofr such thatsy > ro.
(iii) Choose—= < a < b < 0 such thato((a,b)) > 0. Letr < a. Then

cp(b—r)Pto((ab)) if p<1,
cp(a—r)Plo((ab)) ifp>1

f(r)> cp/ (s—r)Plo(ds) > {
(a,b)
Hence the assertion follows.
(iv) Proved similarly to (iii). O

Proposition 2.14.Suppose that f is monotone of order pRriresp.R? | for some
p > 1. Then f is absolutely continuous &n[resp.R].
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Proof. Consider the case @&. We have (1.10) forf with somec € ©(IP). Since
[P =111P-1 it follows from Lemma 2.5 that

()= [ 07 o)ds = [ g(sds

for someg(s) > 0. The case oR is similar. O

LetS=S"1={& cRY: || = 1}. This is the(d — 1)-dimensional unit sphere in
RYif d > 2 and the two-point set—1,1} if d = 1. A family {gg : & € S} of locally
finite measures oR [resp.R? ] is called aneasurable familif g5 (E) is measurable
in & € Sfor everyE € Z(R) [resp.Z(R%)]. If {0z : & € S} is a measurable family,
then,(a) for any |0, co]-valued functionf (r,s) measurable ifr,s), [ f(r,s)0; (ds) is
measurable ifé,r), and(b) for anya > 0, oz ((r,r +a]) is measurable i, r). To
see(a), use the monotone class theorem. To(@geapply(a) to f(r,s) =1, 4(S).

Proposition 2.15.Let p> 0. If {og;: & € S} is a measurable family of measures

in ML~L(R) [resp.MBL(RS)], then{IP(cg): & € S} [resp.{IP(0s): & € S}]isa
measurable family.

Proof. Notice that, for anE € Z(R)
Ip(ag)(E):/dr/ Co(s—1)P 10 (ds)
E (r,00)

=lo ds/ Co(s—r)P1dr,
Locas [ elsn)

which is measurable ié. The case oRf is similar. 0

Proposition 2.16.Let p> 0and let{os : & € S} C MEL(R) [resp.MBL(RS)]. If
{IP(0g): & € S} [resp.{I?(0¢): & € S}] is a measurable family, thefu; : & € S}
is a measurable family.

Proof. Consider the case &. The case oR? is similar. Let{IP(oz)} be a mea-
surable family. For each

Ip(af)(E):/Egg(r)dr, gf(r)z/(m) Cp(s—1)P Lo (d9).

Let

N—oo

r+1/n
0z (r) = liminf n/ ge (r')dr’ = liminf niP(ag)((r,r +1/n).
r — 0o

Then gg (r) is measurable i(¢,r) and, by Lebesgue’s differentiation theorem,
ge (r) = Qg (r) for a. e.sfor every fixedé . ThuslP(a;)(dr) = Gg (r)dr.

Suppose &< p< 1. Let 0< g < p. Then{D9P(g;): & € S} is a measurable
family. It follows from Lemma 2.8 and (2.13) th&tP~9(o;): & € S} is a measur-
able family forq sufficiently close top. Hence, by Lemma 2.9,05: § € S} is a
measurable family. Now, for ang > 0, write p = np’ with positive integemn and
0 < p' < 1and use Proposition 2.4 to sge; : ¢ € S} is a measurable family. O
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Example 2.17.Let p > 0. In the following,o is in MB~1(R) or in ML -1(R3 ) and
we write

folr) = cp/(m)(s—r)pflo(ds) (2.16)

forr € R or forr € RS. Thusf, is monotone of ordep onRR or onR? .
(a) A d-distribution located ax is denoted byd. Let 0 = &, with a € R [resp.
R%]. Then

cp(a—r)Pt r<a
fo(r)=4 P ’ ’
p(r) {O, r>a

Hencef,(r) is strictly increasing for < aif p < 1; fy equals 1 for < aif p=1;

fp is not continuous ifp < 1. If p > 1, thenf, is strictly decreasing for < a and
continuous ofR [resp.R<]. For anyp’ > p, fp is not monotone of ordgy’. Indeed,
otherwise Proposition 2.4 and Theorem 2.10 show &at |P Pt [resp.lﬁl’pr]

for somet € ME~L(R) [resp. ML ~1(R3 )], which is absurd sincé” Pt [resp.
I+p,’pr] is absolutely continuous.

Notice that this functionfy(r) has the following property: itr € R satisfies
a(p—1) > -1, thenfp(r)® is monotone of ordea (p— 1) + 1 and not monotone
of orderp’ foranyp’ > a(p—1)+1.

(b) Let—ew <a<b < w[resp. 0<a< b < ] and leto(ds) = 1 (s)ds Then

Cpra((b—r)P—(a-r)P), r<a
fp(r) = Ccpra(b—r)P, a<r<b,
0, r>h.

Thus

fo(r) =cp((@a—r)Pt—(b—r)P 1) forr<a
Hence, ifp < 1, thenf, is strictly increasing for < a and strictly decreasing for
a<r <b.Forallp>0, fyis continuous orR [resp.RS ]. For anyp’ > p, f, is not
monotone of ordep’ onR [resp.R< ]. Indeed, otherwise = | P-pr [resp.lf’pr]

for somet € MP 1(R) [resp.i)ﬁg/*l(Rj)], which contradicts Proposition 2.13.
(c) Leto(ds) =s ?dsonRS with o > p. Theno € MB1(R<.) and the function
fp is monotone of ordep on RS and

fo(r) = cp/ (s—r)Pls%ds= cprp“’/ (u—1)Ptu%du=c,rP°
r 1
forr > 0, where
cp = cp/ uPL(u+1)"%du=cpB(p,a —p) = la_p/la-
0

(d) Suppose & p < 1. Leta(ds) = (s—b) 1 (S)dsonR with 1 > a > p
andb € R. Theno € MP1(R) and fp is monotone of ordep onR and
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c_(b—r)P- r<b
fo(r) = ¢ o, r=>b
ci(r—b)P o r>b,

wherec, is the same as in (c) and
C_ = Cp/ (U+1)p_1u_aduz CpB(l— a,a - p) == ,—lfarafp/(rprlfp).
0

Note thatfp(b) = ¢; fy (s— b)P~9~1ds= . This fp is a (0, «]-valued continuous
function onR, strictly increasing ori—, b), equal too atb, and strictly decreasing
on (b, ). For anyp’ > p, this fy, is not monotone of ordey’ by the same reason as
in (b).

(e) Let0O< p< a < 1. LetB = {by,by,...} be a countable set iR. Choose
C,>0,n=12, ..., satisfying

Cht > Cibfi ¥ <o
bneBN(—co,1] brneBA(1,%0)

Let

o(ds) = icn(s— bn) 1, ) (S)dS

Theno € ME-L(R), since we have

[ee]

sPlods) = Y C /m sP(s—b,) " %ds< o,
./(1,oo> (ds) nzl " Jonv1 (5= bn) ®

noting that, forh, <1,

/ P Y(s—by) %ds< / P H(s—1) “ds= / (u+1)Ptu%du

1 1 0
=B(1-a,a-p)

and, forb, > 1,

/ P (s—bn) %ds= bﬁ’“/ uwPt(u—1)"%du=bP ?B(1—a,a - p).
bn 1

Let fp o p(S) denote the function in (d). Then
fo(r) =3 Cafpabn(r)
n=1

andfp(bn) = forn=1,2,.... If the setB has supremunw, then limsupfy(s) = .
S—o00

If Bis a dense set iR, then fy(s) is finite almost everywhere but infinite on the
dense set. O
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Example 2.18.(a) Letf(r) =r~P forr > 0 with 8 > 0. Thenf is completely mono-
tone onR? , because, for anp > 0, we can choose = p+ 3 and apply Example
2.17 (c). Alternatively, use Proposition 2.11.

(b) Let f(r) = e " forr € R. Thenf is completely monotone oR. Use Propo-
sition 2.11 orcp ;7 (s—r)P~le~Sds=c, [y uP-le U "du=e".

(c) Let

f(r):{arcsw(l—r), O<r<1,
0, r>1.

Then f is monotone of order 2 oR?, since it is decreasing and convex. For any
p > 2, f is not monotone of ordgs on Ry, . To prove this, supposkis monotone of
orderp > 2 onRs.. Thenf(r)dr = 1P o for someo € MEL(R3). Hencef (r)dr =

117 with T = 1”'g. On the other hand

= /r'm g(9)ds with g(s) = (1— (1-)2) ¥214(9).

Hencet(ds) = g(s)dsby Theorem 2.10. Henags) is equal almost everywhere on
RS to a function monotone of ordgr— 1. Sincep—1 > 1, it follows thatg(s) is
equal almost everywhere d@kr,. to an absolutely continuous function (Proposition
2.14). This is absurd.

(d) Let

F(r) = —logr, O<r<1,
0, r>1

Then, similarly to the previous examplgjs monotone of order 2 oR<. but is not
monotone of ordep on RS, for anyp > 2. a

Example 2.19.Letg(r) = v+ 1—r,r € R, andhs(r) =g(r)?, r € R, with o €
(0,). The functiong is monotone of order 2 oR, sinceg(r) >0, —¢'(r) =1—
r(r’+1)"%2>0, and

g'(n) =2+ 2 —r?(2+ 1) %2 = (2 +1)%2> 0,
9(r) = |rl\/1+[r|2=r = r|[A+O(f®))—r=0("Y), r—w.

Let us show the following.

(a) For everya > 0, hy is not monotone of ordgponR for any p > a + 1.

(b) For everya > 0, hy is monotone of order 1 oR.

(c) The following statement is true for= 1,2, 3. For anya > n, hy is monotone
of ordern+1 onR.

We haveg(r) = 2|r| +O(|r| 1), r — —o0. Hence we see (a) by virtue of Proposi-
tion 2.13 (iii), becauség (r)/|r|P~1 ~ 29/|r|P~9~1 asr — —o0. We have (b), since

,a(Vrz41-r)et 5 _ —ahg
o= = = Vite )= o2, (2.17)
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which is negative oiR. We have (c) fon = 1, since

. thy N, \  ahg >
h”a((r2+1)3/2\/m f(r2+1)3/2(r+a\/r +1), (2.18)

which is positive orR for a > 1.
The following recursion formula is known for the derivativesgf([30] p. 41):

2+ )2 1 2j + a4 (22— a?)hf) = 0. (2.19)

Indeed, this is true foj = 0 from (2.17) and (2.18); if (2.19) is true for a given
j > 0, then its differentiation shows that it is true with- 1 in place ofj.
Now let us prove (c) fon = 2. It follows from (2.17), (2.18), and (2.19) that

—3arh (1—(12)Gh
2 /11 " 2\ a a
re+1)h; = —3rhy, — (1—a“)h :7r+avr2+1 + —
( )a a ( )C{ (I’2 1)3/2( ) 211

u&ﬂﬁﬂ@m 241+ (a®+2)r + (a® - 1))
:uaﬂﬁﬂ@“ 2+ 1k (@ - 2) (@ - Dri (@ -2)(a+ ),

which is negative oiR for a > 2.
Let us prove (c) fon = 3. We have

(rP+1)hG) = —5rhy — (4— a?)h

_(ri’:lhﬁ—,/z(wr r24+ 1+ (a?+2)r? +(a®-1))

(4-a%) eV )

—(rzcj_hla)g,/z[(az+11)ar2 r2+1+(a2—4)a\/m
+6(a?+1)r343(2a% - 3)r]

=(rzih1")5/2[§<a2+1)< r2+1+r)%+3(a?-9)r
+(a®-6a%+11a —6)r2y/r2+ 1+ (a® - 3a% —4a — 3)V/r2+1]
_(I.zj_r;‘f{)g,/z[g(aerl)( 2414124 3(a2—9) (V12 +1+1)

+(a=3)(a—2)(a—-Dr2Vr2+ 1+ (a —3)(a®—4)\/r2+1],
which is positive oR for a > 3. This shows (c) fon= 3. ad

Remark 2.20.0pen question: In the notation of Example 2.1%jsmonotone of
ordera + 1 for everya >0 ? a
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Some transformations more general than the fractional inté§cabre studied
by Maejima, Rrez-Abreu, and Sato [24], which is related to [23].

3 Preliminaries in probability theory

3.1 Lévy—Khintchine representation of infinitely divisible
distributions

We also use a representation of the cumulant fund@ipfz) of u € ID other than
(2.1) in the form

i{z,X)

1 .
Cu(2) = _§<Z’A“Z>+/Rd (e'<1f">—1—1+|x|2

)vumxy+uﬁ,a. (3.1)

Hereyﬁ is an element oRY; A, andv, are commonto (1.1) and (3.1). Throughout
this articleyﬁ is used in this sense. It follows from (1.1) and (3.1) that

- —/] szvmm+/ X vu(dx) 3.2)
W= f e T2 ™ o1 T 2 '

The triplets(Ay, vy, yu) and (Ay, Vg, yﬁ) are both called the &vy—Khintchine
triplet of y. Each has its own advantage and disadvantage. Weak convergence of a
sequence of infinitely divisible distributions can be expressed by the corresponding
triplets of the type(Ay, vy, yﬁ), but cannot by the triplets of the tyg@y, Vyu, Yu)-

This is because the integrand in the integral term is continuous with respect to
in (3.1), but not continuous in (1.1). On the other hand the formulas derived from
(Au, vV, Yu) are often simpler than those derived fram,, v, yﬁ,). See the book
[39] for details. In [39] the author uses the symlydh the sense ofy, but in the
papers [40]-[44] in the sense yﬁ

They, and yﬁ are both called the location parametennfThey depend on the
choice of the integrand in thevy—Khintchine representation. Many other choices
of the integrand are found in the literature. Kwapiend Woyczpnski [17] and
Rajput and Rosinski [31] use some form other than in (1.1) and (3.1). Maruyama
[29] uses still another form.
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3.2 Radial and spherical decompositions affinite measures on
Rd

A measurev(B), B € #(RY), is called o-finite if there is a Borel partitiorBy,
n=12,..., of RY such thatv(B,) < . The following propositions give two de-
compositions ob-finite measures oRY.

Proposition 3.1.Let v be ao-finite measure oY satisfyingv({0}) = 0. Then
there are ag-finite measur@ on S= {&: || = 1} with A (S) > 0 and a measurable
family {vs : & € S} of o-finite measures o] with vg (RS ) > 0 such that

v(B) = //\(df)/ 15(ré)ve(dr),  Be B(RY). 3.3)
Js RS,
Here A andv; are uniquely determined in the following sensgA{d¢ ), v;) and

(A'(d&), vé) both satisfy these conditions, then there is a measurable fungtfon c
on S such that

0<c(&) < oo, (3.4)
c(§)A'(d€) = A(d§), (3.5)
ve(dr) =c(&)vg(dr) forr-aelecsS (3.6)

We call the pair(A (d&), v¢) in this proposition aadial decompositioror polar
decompositiorf v.

Proof of Proposition 3.1If v = 0, thenA = 0 and arbitrary; satisfy the assertion.

Assume thav # 0. LetBn, n=1,2,..., be a Borel partition oR \ {0} such
thata, = v(By) < . If a5 > 0, then letf (x) = 27"/a, for x € By. If a, =0, then
let f(x) =1 for x € Bn. Letb = [ra\ gy f(X)V(dX). We have O< b < 57 ,27".
Let v(dx) = b=1f(x)v(dx), which is a probability measure. Using the conditional
distribution theorem, we find a probability measiren Sand a measurable family
{Ve: & € S} of probability measures oR? such that

V(B):/SX(dE)/RO 15(ré)Ve(dr),  Be B(RY).
Thus

v(B) = [ D100 (d) = [X(d8) [ 1a(r&)bf(r) v (an).

LetA = A and Ve(dr) = bf(r&)~1vg(dr). Thenv; is a o-finite measure oS,
for eaché and (3.3) holds. To see the uniqueness(Md¢), v¢) be the pair just
constructed, and Ie(t/\’(df),vé) be another decomposition of Then, for every

E e %(9),
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AE) = A(E) = ¥((0,0)E) = / b~ (x)v(dX)

J(0,0)E

:/E;v(olg)/w+ b1 (r&)vj (dr).

Letc(&) = fRi b*lf(ré)vé(dr). Thenc(§) is positive for allé and finite forA’-a. e.
&. Modify c(&) on aA’-null set so that (3.4) holds. Now we have (3.5). Then (3.6)
also follows. It follows that (3.4)—(3.6) hold for arbitrary two decompositions with
an appropriate(¢). O

Remark 3.2.1f v # 0, then we can choose the meashirie Proposition 3.1 to be a
probability measure. Indeed, in the proof is a probability measure. ad

Proposition 3.3.Let v be a o-finite measure oY satisfyingv({0}) = 0. Then
there are ao-finite measurev on RS with v(R%) > 0 and a measurable family
{Ar: r € RS } of o-finite measures on S {&: €] = 1} with A,(S) > 0 such that

v(e) = [ 7N [1a(rM(dE).  BeA®). (3.7)

Here v and A, are uniquely determined in the following sensefufdr),A;) and
(V'(dr),A/) both satisfy these conditions, then there is a measurable funcfion c
onRS such that

0<c(r) <o, (3.8)
c(r)v'(dr) = v(dr), (3.9)
A (d&) =c(r)A;(d€) forv-a.e.re RS. (3.10)

Proof is similar to that of Proposition 3.1, interchanging the roleS afdRS. .

We call the pai(v(dr), A;) in this proposition &pherical decompositioof v.

Remark 3.4.1f there is a positive measurable functidi{r) on RS such that
Jra oy F(IX[)v(dX) < oo, thenAr, 1 € S in Proposition 3.3 can be chosen to be proba-
bility measures. Indeed, singga f(|x|)v(dx) = fRo+ f(r)A(Sv(dr), A (S) is finite

for v-a. e.r. Noting that

v(B) = [ M(SV(dr) [ 1a(rE)(Ar () A (dé),

RY

choosey(dr) = A (SV(dr), Ar(d€) = (Ac(S)) A (d€) for v-a.e.r, and); appro-

priately forr in av-null set and considgv(dr), A;) as a new spherical decomposi-
tion. O

We say that the &vy measurey, of u € ID is of polar product typef there are
a finite measurd, on Sand ao-finite measure/,, onR¢. such that
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vB) = [Au(dd) [ 1a(E)Tu(dn, Be#(®). (3.1
S JRS.

Example 3.5.Any stable distributionu on R? has Levy measure of polar product
type. Indeed, ifu is a-stable, therw,(B) = fs)\(dé)ﬁRi 1g(r&)r-o-1dr with a
finite measuré onS O

3.3 Weak mean of infinitely divisible distributions

As usual, a distributio onRY is said to have meam, if [pa|x|p(dX) < e and
Jra Xt (dx) = my,. We say thap has mean iRY if [pa |x|p(dX) < oo.

Definition 3.6. Let 4 € ID. We say thap has weak mean iRY if
/ Xvy(dx) is convergent iR as a— oo (3.12)
J1<|x/<a

We say thau has weak meamy, if (3.12)holds and

Cu(2) = _—1<2,A“z> tim [ (@@ 1 i(Z,X)vu(dx) +i(my,2).  (3.13)
2 a—o J|x<a
If u satisfieq3.12) write
mi = i dx). 3.14
H am" 1<\x\§axvu( X) ( )

Remark 3.7. Condition (3.12) is equivalent to the property that

/ (z,X)vy(dx) is convergent iR asa — oo, for ze RY,
1<|x|<a

becaus§; y<4(2X)Vu(dX) = (Z, [1|x<aXVu(dx)). Condition (3.12) is also equiv-
alent to the property that B

/I\ (€@ —1—i(z,x))v,(dx) is convergent irC asa — oo, for ze RY.
X|<a

Indeed,

/‘X‘<a(é<ZﬁX> 1 i(zX)vu(dx)

= [ @1zl (@) i [ (zxvu(dx)

[x|<a 1<|x|<a

(3.15)

for a> 1 and the first term in the right-hand side is always convergeatase. O
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Remark 3.8.Let u € ID. Thenu has meam, if and only if [, 4 [x|vy(dX) <o
and

Cu(2) = %1<Z,Ayz> +/Rd(é<Z=X> C1oizX)vu(dn +iime2  (3.16)

(see Example 25.12 of [39]). Therefore tithas meamy,, thenu has weak mean
m”. D
Proposition 3.9.Letu € ID. If y has weak mean jin RY, then

My = My + Y. (3.17)

Proof. If 4 has weak mean i9, then it follows from Remark 3.7 and (3.15) that

lim (€ —1—i(z,x))vy(dx)

a—o0 \x|§a

= Rd(eﬂ'<Z=X> —1—i(z,X) 1521y (X)) v (dX) — (M, 2).

Combined with (1.1), this shows thatsatisfies (3.13) witm, = m';l + Yu- O
We strengthen the notion of having weak mean.

Definition 3.10. Let u € ID. We say thap has weak mean iR? absolutelyif

rv,(dr
/(Lw) u(dr)

where (v, (dr),A}) is a spherical decomposition of,. We say thap has weak
meanmy, absolutelyif u has weak mean iRd absolutely and has weak meanp m

/ sA#(d&)] <o, (3.18)

Remark 3.11.Let i € ID. Then the property (3.18) does not depend on the choice
of a spherical decomposition of,. Indeed, if(v,(dr),A}) and (V'(dr),A/(d€))
are two spherical decompositions\gf, then we have

[ roan| fenen)| = [ | [ eaes).
(l,oo) S (1,00) S
since there ig(r) satisfying (3.8)—(3.10) of Proposition 3.3. O
Remark 3.12.1f u € ID has weak mean iRY absolutely, thep has weak mean in
RY, since

o xoa(eg= [ rian [eakde)

1<|x|<a (1,a) S

fora> 1. O

Remark 3.13.1f u € ID has mearm, thenu has weak meam, absolutely, be-
cause finiteness of
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/‘X‘>l|x\vu(dx) :/(lﬁm)rﬁu(dr) /S)\r“(df)
implies (3.18). O

Proposition 3.14.Let u € ID. If p is symmetric(that is, u(—B) = u(B) for all
B c #(RY)), thenu has weak meaf absolutely.

Proof. Assume thap is symmetric. Thel€, () is real. Henceyy, is symmetric and
Yu = 0. Thus|;_ <5 Xvu(dx) = 0 fora > 1. Hence it follows from Proposition 3.9

thaty has weak mean 0. Lév, (dr),A!') be a spherical decompositiongf. Then
it follows from the symmetry ofv,, that, forv,-a.e.r, A is symmetric, so that
Js&AH (d€) = 0. Hence (3.18) holds. 0

Proposition 3.15.Let u € ID with v, of polar product type. Assume that
Jrd [X|p(dX) = 0. Then the following five conditions are equivalent.

(@) u has weak mean iRY.

(b) u has weak mean iR and nj; = 0.

(c) u has weak mean iRY absolutely.
(d) u has weak mean iRY absolutely and I‘pp =0.
(e) Ay andyyin (3.11)satisfy [sEAy(dE) = 0.

Proof. Clearly (d)= (b) = (a) and (d)= (c) = (a). Sincefk‘x‘saxvu(dx) =
Js€Au(dE) fi14TVu(dr), and [ ) rvu(dr) = oo, (a) implies (e). Sincey andA,
give a spherical decomposition of, (€) implies (d). ad

Example 3.16.Let 1 be a 1-stable distribution dRY. Since[s&A,(d€) =0 if and
only if u is strictly 1-stable, Proposition 3.15 gives equivalent characterizations of
strict 1-stability. O

3.4 Stochastic integral mappings of infinitely divisible distributions

In this section letf (s) be a locally square-integrable nonrandom functioriRon=
[0,00) (that is, f(s) is extended real-valued, measurable, gpd(s)ds < o for

anyt > 0). Then, it is known that, for anyévy process{xs(p): s> 0} onRY, the

stochastic integrajg f(s)dxsm) is definable for every bounded Borel $£bn R,
and its lawpg is infinitely divisible and satisfies

CHE(Z):/ECD(f(s)z)ds ze R (3.19)

with ¢ [C,(f(s)2)|ds< o (see [17, 31, 40, 41]). We writg)  (s)dX® for fio, (s)
dxiP.
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Proposition 3.17.Let u; = (fo (s)dXs ) Then the triplet of is given by

:/‘f (9%Aqds 520)
Vi (B / ds / 1a(f(SXVp(dx), Be BRI\ {0}),  (3.21)
V“‘:/ f(s)ds(yp+/ X(l{f(S)X|<1}1{|X§1})Vp(dx)>7 (3.22)

1
Vi, = /f ds<yp+/ (1+|f X|2—1+|X|2)vp(dx)>. (3.23)

Proof. It follows from (1.1) and (3.19) witle = [0, t] that
Cul@) = [ s 1522 A2+ [ (@192 1512201 e0y )
Vo(dh) +1f(8)(yp.2)
= 2 /f dS<ZAp +/ dS/ Zf - 7i<Z,f(S)X>1{|f(S>X‘S1})
up(@)+1 [ ds( [ @ F6) (riscn ~ Hen Vo (@ + 19162 ).

Hence we have (3.20)—(3.22). Similarly we obtain (3.23) from (3.1). O

We say that the improper stochastic integralfofvith respect toX(®) is defin-
ableif [j f(s)dxém is convergent in probability ais— co. The limit is written as
& £()dXP); we define

Oip— (/Ow_ f(s)d)(s(m). (3.24)
The domain® (®s) of @5 is defined by
D(®5) ={p € ID(RY): [ f(5)dX? is definablg.
We often say that; p is definable if[;° (s )dX§p> is definable. It is known that

®s p is definable if and only iff;C,(f(s)z)ds is convergent as — o for every
ze RY (see [42)). Ifds p is definable, then

Co, p(2) _nm/c:p )2)ds  ze RY. (3.25)

Three extended notions (essential, compensated, symmetrized) and one restricted
notion of definability of improper stochastic integrals are introduced in [41, 42,
44]. Here we use the restricted notion and one extended notion. We say that

J&~ £(s)dxP is absolutely definabli
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/ ICo(f(s)2)|ds< w, zeRY (3.26)
Let
DO(dr) ={p € ID(RY): [ f(s)dX is absolutely definable

We say thatfy f(s)dxs(p Vis essentially definabli, for someRY-valued function

g onR,, fo ( )d)(S q is convergent in probability as— o, which is equiv-
alent to the property thqu Co(f(s)z)ds—i(at,2) is convergent as— oo for every
zeRY. Let

D%(@r) = {p c ID(RY): f(;”’f(s)d)ép) is essentially definable

We have
DO0(@5) Cc D(Df) C D%(@x). (3.27)

Define the rangeli(®s), the absolute rang&®(®s), and the essential range
RE(d;) of P5 as

%(mf) = {CDfp: p e @((Df)},
RO(@r) ={Prp: pe ©°(¢f)}
RE(@y) = {Z(pim([§ ()X ~)): p € DY(@r) and

p-lim(f3f(s)dXP) — q) exists}.
t—oo

Then
RO(df) C R(Pr) C RE(@y). (3.28)

We will use the following fact.

Proposition 3.18.Letp € ID(RY).
(i) p € D(®¢) if and only if the following three conditions are satisfied.

/ F(8)2(trAp)ds < o, (3.29)
/ ds/ (S)X? A L), (dx) < (3.30)
Y Of (3.22)is convergent ilRY as t — oo. (3.31)
(3.31)can be replaced by
yﬂt of (3.23)is convergent ilRY as t — co. (3.32)

(i) If p € ©(P¢), then the triplet ofu = @ p is given by

A= ./: £(92A0ds (3.33)
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Vu(B) :/ ds/ 1a(f(9X)vp(d¥), Be BERI\{0}),  (3.34)
“—MEW’ (3.35)
Vi = lim vf;. (3.36)

(i) p € DO(y) if and only if (3.29) (3.30) and

/0 |f(s)|ds|yp + /Rd X(Lgtom<1y — Lyw<1y) Vp(dX)| < oo (3.37)
or, equivalently(3.29) (3.30) and
1
/ T(s)lds y"+/ (1+|f X2 1+|x|2> Vold] <o (3:39)

(iv) p € D8(®y) if and only if (3.29)and(3.30)are satisfied.

Proof. If we ignore the statements relatedyq y,,, andy, and retain those related

to y,g, yﬁt, and yﬁ, this proposition is proved in Lemma 5.4 and Propositions 5.5—
5.6 of [41], Proposition 2.6 of [42], and Propositions 2.1-2.3 of [43]. Let us give
remarks concerning the statements relateg, g, , andy,. An important point is
that the convergence @f ast — o« is not only convergence of infinitely divisible
distributions but also withz,A,,2), z € RY, and vy, increasing witht. If (3.30),
(3.32), (3.34), and (3.36) hold, then

XX [
——— v, (dX dx
Jea Tr e @9 = f L T (@9,

X X
—— vy, (dx / ———v,(dx), t— oo,
/\x\>11+l><|2 b () = x>1 14 [x[2 (e

by virtue of the increase afy, in t, and hence, from (3.2), is convergent tgy,,
thatis, (3.31) and (3.35) hold. Conversely, (3.30), (3.31), (3.34), and (3.35) together
imply (3.32) and (3.36). The proof of the equivalencepof D°(®s) to (3.29),
(3.30), and (3.37) is as follows, which is similar to the proof of Proposition 2.3 of
[43].

For u € R definepy(B) = fra 1a(ux)p(dx), B € Z(RY). Thenp, € ID, A,, =
WA, Vp,(B) = [pa1g(UX)v,(dx) for B € Z(RY\ {0}), and y,, = Uyp + Jga UX
(1{|ux‘§1} — l{‘XEl})Vp(dX). We have

Z? z?
Co(u] = [Ca @) < Gy tran+ (5 +2) [ (XEADYA (0 + a1

If (3.29), (3.30), and (3.37) hold, theifyy’( trAp )ds < oo, Jo dsfpa(|X|? A 1)
Vs (%) < o, and I |VpsgldS < e and hencefO |Co(f(5)2)|ds < o, that is,
pe ©°(¢f)
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Conversely, assume thate D°(®s). Then (3.29) and (3.30) hold, singec
D(®¢). Notice that InCy (f(s)2) = 11(s) + 12(s), where

li(s) = /]Rd (sin(z, f(5)X) — (z, T()X) 141 (gx<1}) Vo (dX),

l2(s) = /Rd (Z £(9%) (L r(9x<1p — Lx<ap) Vo (AX) + (F()Vp, 2) = (o), 2

kN

(o) < (B +2) [ (6B D (@9,

we havefy’ [11(s)|ds< o from (3.30). Hence it follows from
oo>/ |Cp(f(s)z)|d52/ Im C, (f(3)2)|ds
0 0

that [o” [ (Vpy s, 2)[ds< oo foranyze RY. Therefores’ Yy [dS< 00, which is equiv-
alent to (3.§7). O

The following two propositions state the “linearity” @;, but we will not use
them except in Section 5.2. Fpre ID(RY) andt > 0, the distinguishetth power
of p(z) in the terminology of [39] is denoted y(2)* (that is,p(2)' = exp(tCp(2)))
and the infinitely divisible distribution with characteristic functipfe)! is denoted
by p'.

Proposition 3.19.Lett> 0. If p € D(®s), thenp' € D(®¢) and ®¢ (p') = (Psp)t.
If p € DO(Ds) [resp.D8(®s)], thenp! € DO(®¢) [resp.DE(Ps)].

Proof. Use the relatioiC,: (z) = tCy(2). O

Proposition 3.20.1f p, p’ € D(®s), thenp*xp’ € D(®;) and P (p+p’) = (P p) *
(dsp)). If p,p’ € DO(Dy) [resp.DE(®y)], thenp x p’ € DO(ds) [resp.DE(Dy)].

Proof. Use the relatio©,, , (z2) = C5(2) +Cy (2). O

Remark 3.21.Sato and Yamazato [45] proves the continuity of the map@hig
some sense. Results in Rajput and Rosinski [31] suggest continuity in some sense
of the restriction of®; to ©°(®x). O

Remark 3.22.1f |f,| < |f1], then®O(dy,) C DO(dy,). We express this fact by
saying that the clas®°(®s) is monotonic with respect té. In this terminology,
DE(dy) is also monotonic with respect g but®(®s) is not monotonic with re-
spect tof. The latter fact is related to some properties of martingale/lprocesses.
See Sato [43]. O

Remark 3.23.Up to this point in this section we have assumed that a locally
square-integrable function dk,. Givenp € ID, ¢ f(s)dxs(p) can possibly be de-
fined for all bounded Borel sei&s on R, for a functionf satisfying a weaker con-
dition. However, we can prove thatffis a measurable nonrandom functioni®pn
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such thatfg f(s)dxép) is defined for all bounded Borel seison R, and for all
p € 1D, thenf is locally square-integrable d, ([41]). ad

Remark 3.24.General treatment (with random integrands in general) of improper
stochastic integrals and stochastic integrals up to infinity from the semimartingale
point of view is made by Cherny and Shiryaev [6]. Stochastic integrals of nonran-
dom functions with respect to an infinitely divisible random meagui8) for B in

a o-ring of subsets of a general parameter space are studied by Rajput and Rosin-
ski [31]. The integrability condition suggests that our absolutely definable improper
stochastic integral of a nonrandom function with respect t@aylprocess should

be identical with the stochastic integral up to infinity of Cherny and Shiryaev [6]
and with the stochastic integral of/&-integrable function of Rajput and Rosinski
[31]. In our set-up, improper stochastic integrals in more general cases are studied
in [41, 44]. O

3.5 Transformation of Llevy measures
Let f(s) be a locally square-integrable nonrandom functioriRon Suggested by

the equation (3.34), we introduce the transformatignin the following way.

Definition 3.25.For v € Mt = M-(RY), let v be a measure oiRY defined by
v({0})=0and

v(B) :/ ds/ 15(f(8X)v(dx), Be BERM {0}). (3.39)

Define
D(dF) ={vemt-:vemt)

and ®Fv =V for v € D(®}). The range is defined by
R(PF) = {Prv: v eD(PF)}.

Remark 3.26.Suppose thafy’ | f(s)|ds> 0. For a measure onRY with v({0}) =

0, define a measure on RY by v({0}) = 0 and by (3.39). IV € 9", thenv ¢
ML, Indeed, choose @ a < 1 andE € Z(R".) with Lebesgue measutesuch that
|f(s)| > afor se E, and observe that

/(\x\zAl V(dx) = /ds/ (X2 AD)v(dx) > /ds/ (@2Ix[2) A L)v(dx)
> baZ/Rd(\x\z/\l)v(dx),

whereE can be chosen with finite and positive. O

The essential rangB®(®x) is connected wittR(®}).
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Proposition 3.27.Suppose thab < [3° f(s)2ds < «. Then?R®(®s) is the class of
U € 1D with Lévy measure, being inR(®¥).

Proof. If u € M®(®), then we havey, € R(PL) immediately from Proposition
3.18 (iv) and Definition 3.25.
Conversely, letu € ID such thatv, = ®Fv for somev € D(Pk). Let A=

(J5 f(s)2dg) 1A, and letp € ID be such thatA,, vp, p) = (A v,0). Let

t
CIt:/O f(S)dS/RdX(l{ﬁ(s)x\gl}*1{\x|g1})Vp(dX)*Yu-

Then.Z (4 f(s)dX’ — q) has triplet(A, %, ), whereA, and; are given by the
right-hand side of (3.20) and (3.21), apd= y,. Using Lemma 5.4 of [41] and the

argument in the proof of Proposition 3.18, we see gﬁa(s)dxs(”) — @ converges
in probability ag — . The limit distribution equalg. Henceu € 58(®y). a

4 First two-parameter extensionKp o of the classL of
selfdecomposable distributions

4.1 &¢ and @k for f = ¢4

We give some consequences of the conditions

there area;, a; > 0 such thae 22° < ¢o(s) < e 2°for all larges, (4.2)
and

da(s) =59 with a € (0,0) ass— . (4.2)

In general, for two functiond and g we write f(s) =< g(s), s— o, if there are
positive constants; anday such that 0< a;g(s) < f(s) < axg(s) for all larges.
The following description of the domains is known.

Theorem 4.1.Let0 < a < . Suppose thap, is locally square-integrable oR
and satisfie$4.1)(4.2).
@) If a =0, then

D(Pg,) ={veM": [iy=110g[Xv(dx) < eo}.
(i) If0< o < 2, then
D(Bg,) ={veM": [y-1/XTv(dX) < oo}

(i) If a > 2, then® (@, ) = {%}.
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Proof is given in the same way as that of Lemma 2.7 of [42] and Proposition 4.3
of [43]. A similar proof will be given to Theorem 6.2.

Theorem 4.2.Let0 < a < . Suppose thap, is locally square-integrable oRR .
and satisfieg4.1)(4.2).
() If a =0, then

D0(Wy,) = D(Dy,) = DE(Dy,) = {p € ID: Jix>1109X|Vp(dX) < 0}, (4.3)
(i) If 0< a < 1,then

0Py, ) = D(Pp,) =D%(Py,) ={P €D [iy1[X[TVp(dX) <} (4.4)
(i) If a =1, then

D(@y,) = {p €D [iy=1/XVp(dX) < o0} (4.5)
D(Py,) ={p €ID: [ly=1X|Vp(dX) <o, [gaxp(dx) =0,

t .
Iim/ ds/ $1(S)x Vv, (dX) exists inR¢
0 95 s omo 1(8)xVp (dx) }

t—oo

4.6
={p€ID: [-1[XVp(dX) <o, [paxp(dX) =0, (4.6)
. $1(s)x|p1(s)x]? et i
tlm A ds » va(dx) exists inR”},
D(®g,) = {p € 1D Jiy1[XVp(dX) < o, fraxp(dx) =0,
/o ds’-/rpl(s)x>1¢1(S)XVp(dX) = (4.7)
={p €ID: [=1X[Vp(dX) < o, [paxp(dx) =0,
* $1()x|Pa(s)x?
/0 ds » va(dx) < oo},
(iv) If 1< a <2 then
D(Pp,) =D(Pge) & DX Py,). (4.8)
DBy, ) ={p €D [ly1X|*Vp(dx) < oo}, (4.9)
D(Pyy) =D(Pp,) = {H €D(Pyg): fraxp(d) =0} (4.10)

(v) If a > 2, then

D0y, ) =D(Pp,) = {0} S D%(Pp,) = {&,: ye RY}. (4.11)

Recall the following. Ifp € ID, then f,.log|X|vp(dx) < c and [, ,log|X|
p(dx) < « are equivalent. Ifp € ID anda > 0, then J,_; [X|V,(dX) <  and
Jrd [X|%p(dX) < o are equivalent. See Theorem 25.3 of [39].
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Lemma 4.3.Letp € ID and fa |X|p(dX) < . Then
xp(dx) =0 < :—/ XVp (dX
[ xp(d o= [ XVe(@

o[ XXP
& Y= /Rd1+|x|2vp(dx).

(4.12)

Proof. Straightforward from (3.2) and (3.17). O

Proof of Theorem 4_ZExcept assertion (jii), these are shown in Theorem 2.4 of [42].
A similar proof will be given to Theorem 6.3. Let us prove (iii). For the description
of ©€( @y, ), combine Proposition 3.18 (iv) with Theorem 4.1. In order to prove (4.6)
for ©(®y, ), first note thap € D(Py, ) if and only if p € D¥(Py, ) and (3.31) holds
(Proposition 3.18 (i)). Recall thalt; (s) < s! ass — c. Assume thap ¢ D(Py, ).
Thenf‘x*>l|x| Vp(dX) < . We have %\¢1(S)X\§1} - 1{\x\§1} — 1{|x|>1} ass— oo, It
follows from the dominated convergence theorem that

/Rd XLpaiom=ty = Lip=aVp(dX) = | xvp(dx), s — e
since(X(1y4,(s)x <1} — Lyx<1})| is bounded byx| for all x and equals O fojx| < 1
and |¢1(s)| < 1. Sinceyy, of (3.22) is convergent, it follows thai, satisfies the
condition in (4.12). Hencgra xp(dx) = 0. Replacingy, in (3.22) by that of (4.12),

we obtain .
Ve /0 [$1(s)X|>1 l( ) ( )

Hencepu belongs to the right-hand side of the first equality of (4.6). The converse
direction is similar. This proves the first equality of (4.6). The proof of the second
equality of (4.6) is done in the same idea. In order to show (4.7)&1%(@451),
notice thatp € @O(%l) if and only if p € D%(®y, ) and (3.37) holds (Proposition
3.18 (iii)) and use Lemma 4.3. O

Finer results are given in the cage= 1.

Theorem 4.4.Suppose thatp; is locally square-integrable o, and satisfies
¢1(s) =< s™! as s— . Suppose, in addition, that

/lw |$1(s) — cs Y|ds< oo (4.13)

with some ¢> 0. Then

D%(®p,) S D(Pp,) S D Pyy), (4.14)
D(Py,) ={p €ID: fyy=1/XVp(dX) <, [raxp(dx) =0,
ot .y (4.15)
lim [ s ds/ XVp (dx) exists inR" },
1 [x|>s

t—o0
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@0(¢¢1) ={p€ID: f|x|>1‘x‘vp(dx) <o, [raxp(dX) =0,

/s‘lds/ XVp (dX)
1 [x|>s

This is Theorem 2.8 of [42].
For a < 1 description of the ranges is simple.

o (4.16)

Proposition 4.5.Let0 < a < 1. Suppose thap, is locally square-integrable oR
and satisfieg4.1)(4.2). Suppose further that, > 0. Then

RO(Dpy ) = R(Pp,) = RE(Dy, ) = {1 €1D: v € R(Pp, )} (4.17)

Proof. Itis known in (3.28) thati®(dy, ) C R(Py, ) C RE(Dy,, ). Suppose that €
Re(dy, ). Thenp is the law of p-lin f3dq (S)dXP) — ) for somep € DE(y, )
t—o0

and somey. Sincea < 1, it follows from Theorem 4.2 that € D°(®,, ). Hence

fé qba(s)dxs(p) is convergent in probability as— . Thusg; tends to some e RY.
It follows that pt = i * 6_q for somefi € RO(Pg, ). Since 0< [5° Pa(S)ds < o,
we see thap itself belongs tdR%( @y, ). The assertio®(®y,) = {u € 1D: v, €
i)%(tD!,;a)} comes from Proposition 3.27. O

4.2 Opq and f

Let —o < a < o and 0< p < . In Section 1.6 we have introduced the two-
parameter family of mapping®, . Namely, starting from the functio®= gp « (t)

of (1.13), we define its inverse functian= fp 4(s) for 0 < s < apg = gp.a(0+),
wheregp o (0+) = ¢ /lp—a for a < 0 ande for a > 0; if a < O, thenfp4(s) is
defined to be zero f&s> a, o; then we define

Ppap =L (/Ow_ f_p,cr(s)dxs(p)) (4.18)

with @(CEW) being the class gb € ID such that the improper stochastic integral
in (4.18) is definable.
Note the following special cases.pf= 1 anda = 0, then

Oi0(t)=—logt, O0<t<1, fros) =€, s>0. (4.19)

ThUSCE]_)O = @, where® is given by (1.11). Ifp= 1 anda # 0, then

_ a lt?-1), o<t<1 for o > 0,
gl,a<>—{(_( : (4.20)

a)}(1-t79), 0<t<1l fora<O,
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— (1+as) V9, s>0 for a > 0,
f1a(s) = 4.21
1a(S) {(1— (—a)9¥-9)  0<s<(-a)l fora<O. (4-21)
If p>0anda = —1, then
Op-1(t) =Cps1(1-1)P, 0<t<1, (4.22)
fo 1(9) =1— (Mp19)"P, 0<s<cpir. (4.23)

Asymptotic behaviors of_p,a(s) for a > 0 are as follows. This is given in Propo-
sition 1.1 of [42] without proof.

Proposition 4.6.As s— o,

f_p,o(S) ~exp(c—Ips) for p> 0, (4.24)
fpa(s) ~ (alps) Y for a > 0and p> 0, (4.25)
fp1(S) = (MS) ™t — (1— p)(Ips)~2logs+O(s2) for p > 0, (4.26)
where N
c=(p~1) [ (1-uP logudu @.27)

Proof. (4.24): Ast | 0,

1 1
gpp(t):cp/ u’ldu—i—cp/ (1—uP—1)uldu
t t
1
_ —cp|ogt+cp/ (1—uP 1= 1)uduto(1)
0

and

1 1
/0((1—u)p Y 1du:(1—p)/

u
uld u/ (1—v)P2dv
0 0

1
=(1- p)/ (1—v)p‘zlog}dv: C.
0 v

It follows that B
s=cCp(—logfpo(s)+c)+0(1), s— o,

that is, (4.24) holds.
(4.25): Leta > 0 andp > 0. Ast | O,

1 1
t t
= aept +O(t ).

Hence .
s= fpa(s) % (atcp+0(1), s— .
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(4.26): Letp > 0. We have
Opa(t) =cpt 1 — (1—p)cplogt +O(1), t]0,
since
1
Opa(t) =Cp (tl +/ (1—uPt-1)u2du— 1)
t
1 1
=cp <t1+ (1— p)/ udu+/ (L—uwP1-1-(1-puju2du— 1) .
t t
Hence

s=Cpfp1(s) ™ — (1— p)Cplog fpa(s) +O(1), s— o,
that is,

fpa(s) = Cps t — (1— p)cps *fp1(S)10g fp1(S) +O(S  fpa(S)). (4.28)
On the other hand we have

Opa(t) =cpt t+o(t™), t]O,
s=cpfp1(s) t+0(fpi(s) ), s— 0.
fp1(S) = cps H(1+0(1)),

successively. The last formula and (4.28) yield (4.26) witsr?logs) in place of
O(s2). Then this and (4.28) give (4.26). i

If a <0, thenD(®pq) = D(Ppa) = D(Ppa) = ID(RY). If a >0, then
D D), D(Ppa), andDe( @y, o) are described by Theorems 4.2 and 4.4 by virtue
of Proposition 4.6. As a consequence, they do not depenu bfe notice thatby o
is trivial if o > 2.

For —o < a < e andp > 0 we defined}, = @k with f = 4 as in Defini-
tion 3.25. Again by Proposition 4.6, Theorem 4.1 is applied to the description of
’D(‘I_’E,a), which does not depend gm If a > 2, thencDFLw is trivial. If o < 0O, then
Z)(cbg,a) = 2)31'—.

If veD(P5,), then

@ v(B) = /omds/Rd 1a(fpa(8X)v(dX)
—- /0 1dg_p,a(t) /R L As(t)v(d (4.29)
— cp/ol(l—t)p‘lt‘o"ldt/]Rd 15(tx)v(dx)

for B € #(R%\ {0}). This shows tha@'ﬁa is an example ofr-transformations
studied by Barndorff-Nielsen, Ra@ski, and Thorbjgrnsen [2].
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The family d%,a satisfies the following identity.

Theorem 4.7.Let—o < a0 < 2, p> 0, and g> 0. Then
HL L HL 5Ll
Ps.qa = Poa—pPpa = PpaPoa—p (4.30)

Proof. Letv ¢ M-(RY). Letv()), j = 1,2 3,4, be measures d&® with v(i) ({0}) =
0 satisfying

v(E) = [ ds[ 1a(fra(pv(dx),
:/Owds/Rdlg (faa_p(9vV(dx),
:/0 ds [, a(faa-p(shv(d).

B) = [ ds |, 1a(fpa(spv (d

o

for B #(RY\ {0}). Then
v (B) = cq /0 "1ty 1-atp-igy /R L 1s(tov® (dx)
= CqCp ./01(1—t)q*1t*‘”p*1dt/01(1 —u) "flu*"’*ldu/ﬂéd 1g(tux)v(dx)
— cCp /R Lv(dy /0 S(1— )0 Lo -1y /0 " 1a(tux) (1 — u)P-Lu-o-dy
= cqcp/Rd v(dx) /01(1—t)q’1dt/0t 1g(wx) (t —w)P~tw 2~ 1dw
= cqcp/Rd v(dx) /01 1B(wx)w*"*1dw./vlvl(l—t)qfl(t —w)P1dt

~ oG /R Lv(dy /0 " Lg(wi)(1— w)PF et a1y /0 "1 y)typtay
(by change of variableg= (t —w)/(1—w))
= Cpiq ./(;l(l—w) p+q*1W"”*1dw/]Rd 1g(Wx)v(dx).
Hence it follows from Definition 3.25 that
v em-RY) & veD(Dhqq)
On the other hand,
v emt®Y) & vYed(df, )

and
veD( p+qa) A Veg(aﬁ-ﬂ)
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by Proposition 4.6. Hence
VED(Phqa) © VED(PLy), PraveED(Pry )

— L Pt observe

HL HL imi $HL
andd)lo+q o= @ - Similarly, inorder to se@;. 4 = Pp ¢ Poa—ps

q.0—p Tp,a-
that
1
v (B) = Cp/ (1—u)”*1u*"’*1du/d 15(ux)v® (dx)
JO JR
1 1
= ot / (1—u)P~tu9-Tdy / (1 )9 a+p-1gy / (Ut v(d),

0 0 R

which equals/(? (B) in the preceding calculus. i
Corollary 4.8. We have

R(Pp 4 )DD%((EF';G) for0<p<p <wand—o<a <2, (4.31)

R(D;_pq) DR(PL_p o) for —o<B<a<a <2 (4.32)

Proof. The decrease (4.31) follows fromF, 0= Poa®y_ o in(4.30). f—c0 <
B<a<a <2, thendt, Bar = =L oL . Hence the decrease (4.32) fol-

a—B,a Ta'—a,a’
lows. O

4.3 Range ofd} ,

Let us give the description @R(tfg’a) and the one-to-one property cﬁ’ﬁa.

Theorem 4.9.Let —o < a < 2and0 < p < . B
(i) Letv e ’D((D,%ﬂ) with a radial decompositiofA (d¢), vz ) and letv = whav.
Thenv has a radial decompositiofd (d),u% "k (u)du), where

ke (U) = cp /(u’w)(r —u)P L@y (dr). (4.33)
(ii) @5 is one-to-one.
Proof. (i) Beginning with (4.29) we have, f@ < #(RY\ {0}),
_ L-a-1
cp/A (dé) / . (dr)/o (1—t)P~ 0115 (tr &) dt
—c / A (d€) / TP e(an /O (r —u)P L= 11g(uf)du

—/A (dé€) / (U&= Tk (U)du,
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wherek; (u) is given by (4.33). Since; (RS ) > 0 for eaché by the definition of a
radial decompositiorks (u) is not identically zero for each. B

(ii) Let V € R(Pg ). LetV = @F ,v = @5,V for somev, V' € D(PF ). Let
(A(d€),vg) and (A'(d€),vg) be radial decompositions of and V', respectively.
Then V has radial decomposition§\ (d€),u=9 ke (u)du) and (A/(d&),u~o*
k’g(u)du), wherekz (u) is given by (4.33) andk’é(u) is given by (4.33) withvé in
place ofvg. Hence, by Proposition 3.1, there is a measurable functidnsatisfy-
ing (3.4), (3.5), andi~* K (u)du= c(&)u~? ke (u)dufor A-a. e.£. Hence

Ke (Wdu=c(&)ks (u)du, A-a.e.l.

Sincev € MH(RY), ke (u)du andk%(u)du are, forA-a. e.&, locally finite measures
onRS . Therefore, Theorem 2.10 on the one-to-one propertﬁ @fuarantees that

re Py (dr) = c(E)rv PHlug(dr), A-a.el.
Hencev; = c(§)veg(dr), A-a. e.§, and we obtain’ = v. O
The range 01’5'570r is characterized, using the notion of monotonicity of orper

Theorem 4.10.Let —0 < a < 2 and 0 < p < «. A measure on RY belongs
to R(®5,) if and only if n is in 9" and has a radial decompositiofh (d&),
u~% ke (u)du) such that

ks (u) is measurable ifé,u) and, forA-a.e.&,
£(U) g, u) ¢ (4.34)

]

monotone of order p oRY in u.

Proof. Let n € R(®f,). Thenn € M- andn = ®f ,v for somev € D(Bf ).
Thus by Theorem 4.9 has a radial decompositid@ (d€),u" kg (u)du) with
ks (u) of (4.33). Since{vs } is a measurable familk; (u) is measurable iié, u).
Sinceke (u)du andr@P+lyg (dr) are locally finite measures dk. for A-a.e.&,
(4.33) shows that®—P*1ug (dr) € D(1?) for A-a.e.& and thatkg (u) is monotone
of orderponR] forA-a.e.é.

Conversely, suppose thay € M- with a radial decompositionA(d&),
u~ ke (u)du) satisfying (4.34). Modifyingkg (u) for & in a A-null set, we can
assume that, for aff, kg (u) is monotone of ordep on R?.. From the definition of
monotonicity of ordemp, there is a measure: € ML -1(R?) such that

ke (U) = Cp / (r —u)PLog (dr).
(Uo)

It follows from Proposition 2.16 thafo;: & € S} is a measurable family. Let

Ve (dr) = r=9+P~1g;(dr). Definev by v(B) = fsA (d§) Ji0.e) 18(r&)ve (dr). Then

the equalities in the proof of Theorem 4.9 (i) show that
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n(B) :/Omds/Rd 1a(fpa(X)v(dX)

for B e #(R%\ {0}). Sincen € M*, it follows from Remark 3.26 that € D(®; ;)
andn = @ 4 v. O

4.4 ClasseXpq, KD 4, andKe

For —co < o < 2 andp > 0 we define

Kpa = Kp.a(R?) = R(®Pp,q), (4.35)
KD ¢ = Kp o (RY) = RO(@pq), (4.36)
KS.a = Kfa(RY) = RE(Dpa). (4.37)

Proposition 4.11.We have

Kg.’a = Kp’a = KSC( fOI‘ —o << 1’ (438)
Kpa € Kp1 CKpy, (4.39)
Koog =Kpa CKSy forl<a<2 (4.40)

Proof. Use Proposition 4.6. i < 0, then (4.38) comes froap o <. If0<a <1,
than (4.38) comes from Proposition 4.5. We have (4.39) from (3.28)<lfol< 2,
then we have (4.40) from (3.28) and Theorem 4.2. O

In Section 5 of [42] it is conjectured that, in the notation of the present article,
Ppiqa = Paa—pPpa = PpaPap (4.41)
fora e R, p>0,andg> 0. Forp € 51)0((5p+q,a) these equalities are proved.

Theorem 4.12.Let —0 < a < 2, p> 0, and q> 0. Let p € DDy qa) =
DO(Ppq). Then

p €D Pga_p), Paa_ppP € D% Ppa), Ppap € D% Pga_p), (4.42)
and

cEp-s—q,a p= 5q,a—p(5p,a p= 6p,a ‘5q,a—pp- (4.43)

Proof. A distributionp € 1D is in ©°(®,,q4) if and only if

1
Cp+q /0 Cp(t2)|(1—t)PT a1t~ Lt < oo, (4.44)



Fractional integrals and extensions of selfdecomposability 47

Thus, (4.42) holds if and only if

1
cq/ ICo(t2)|(1—1)% 19 P2t < oo, (4.45)
0
1
¢ /0 Cap op(t2)(L—1)P 1 1dt < oo, (4.46)
1
o / I, 0p(t2)| (1—1)F 1P~ 1t < oo, (4.47)
| [Ca,

We assume € D0(®p qa) = D(®Ppq), that is, (4.44). Then (4.45) holds, since
J1521Co(t2)](1 — )% 1dt < w0 as [Cy(tz)] is bounded and sincgy’?(Cp(t2)]
t~2+P-1dt < o from (4.44). To see (4.46), notice that the quantity in (4.46) is

1 1
:Cqu‘/‘0 (1_U)P*1U*G*ldu/0 Cp(tuz)(l_t)q—lt—aerfldt

1 1

1
:Cp+q/0 ICp(v2)|(1—v)PHa-ly—a—1dy,

where the last equality is obtained in the proof of Theorem 4.7. (4.47) is similarly
true, since the quantity in (4.47) is

1 1
< cCp /0 (1) Y-a+P-Iqy /0 ICp (Ut2)|(1— u)P~tu=a~du

Hence (4.42) is true. Now, the estimate above guarantees the use of Fubini's theorem
in showing that

1 1
CoCa /o (1—u)P Ly 1dy /0 Cp (tuz)(1— )4~ +P-1gt
1
= cp+q/ Cp(v2)(1—v)Pra-ty—a1gy,
0

Thus we obtain (4.43). O

Remark 4.13.By the method of the proof of Theorem 7.3 (ii) in Section 7.1,we
can prove that (4.41) holds #feo < o <1, p>0,andg>0,orif 1< a < 2,
O<p<a-1,andg>0. a0

Now we present some decrease propertiekgy, Kgﬂ, andKS’a.
Corollary 4.14. (i) ForO< p< p <wand—w < a < 2,
Koo D K?y,a and K3, DKG . (4.48)

(i) For—o < B<a<a <2,
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Ka-pa DKo pas Ko pagDOKQ pgan and K g DKS ;.. (4.49)

Proof. Concerning}(ﬁa, use Theorem 4.12 and proceed as in the proof of Corollary
4.8. Concerning(ga, use Proposition 3.27 and Corollary 4.8. Concerggg o O

Ka_p.q in (ii), it is a consequence 2 ) K2,7B o If @ #1anda’ # 1, since

a—B,a
we have Proposition 4.11. & = 1, thena’ > 1 andK; g1 DK? 5, DK 5./ =
Kar—p,ar- If @’ =1, thena < 1landK, g, = Kg—[z.a D Kf_B 12K g1 O

The decrease property in (i) is true also g4, but we have to use the later
Theorem 4.18.
Characterization oK§ , is as follows.

Theorem 4.15.Let—o < a < 2and p> 0. Thenu € K§ , ifand only if u € ID and
its Levy measurey, has a radial decompositiofh (d€),u=" "k (u)du) satisfying

ks (u) is measurable irié,u) and, forA-a.e.&,
. (4.50)
monotone of order p oRZ in u.

Proof. This follows from Proposition 3.27 and Theorem 4.10 immediately. O

Proposition 4.16.Let0 < a < 2, p> 0, andu € Kg . Then
/‘ XPu(dx) <o forall B € (0,a). (4.51)
[x]>1

Proof. The Levy measure, is in (% ;). Sov, = ®% , v for somev € D(® ;)
and

. 1
/ IXIP v (dX) = cp / 1-t)P gt [ txPu(dy)
[x|>1 0

[tx|>1
1
:cp/ \x|3v(dx)/ (1—t)P- 1 L+B-agy
x>1 1/

< const/ IX|9v(dx) < oo
[x|>1

from Theorem 4.1. Hence we have (4.51). O

Remark 4.17.Let 0< o < 2 andp > 0.

(i) There isu € K3 ;, such thatfq x| p(dx) = co.

(i) There isu € KS,Q which is not Gaussian and satisfigg X|%" (dX) < oo for
alla’ > 0.

These facts follow from Proposition 5.13 combined with Theorem 5.11 of the
later section. O

Characterization oK 4 is as follows.
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Theorem 4.18.Let—o < a < 2and p> 0. Letu € ID.

(i) Assume thatr < 1. Thenu € K 4 if and only if v, has a radial decomposition
(A(d&),u=" 1k (u)du) satisfying(4.50)

(if) Assume thatr = 1. Thenu € Ky if and only if 4 has the following two
properties: v, has a radial decompositiof (d€),u=2k; (u)du) satisfying(4.50)
with o = 1 and i has weak meaf.

(iii) Assume that < a < 2. Thenu € K, 4 if and only if has the following two
properties:v,, has a radial decompositiofd (d€),u~% 1k, (u)du) satisfying(4.50)
and u has mear®.

Proof. (i) (o < 1) Recall (4.38). Then the assertion follows from Proposition 3.27
combined with Theorem 4.10.

(i) (a =1) Let f = fy1. The “only if” part. Assume thau € Kp1. There is
p € D(Pp1) such thafy = @, 1p. We haveu € K7 ; from (4.39). Hencey, has a
radial decompositioiiA (d€ ), u=?ke (u)du) with kg (u) satisfying (4.50) witho = 1
by Theorem 4.15. We havk. ; [X|Vp(dX) < e and [ga xp(dX) = 0 from Theorem
4.2 (iii). Henceyp = — [ 4.1 XVp(dx) from Lemma 4.3. This, combined with (3.22)
and (3.35), gives

t
_y, = lim ds/ £(9)xV, (dX). 4.52
AT B (CAC 4.52)
Hence

1
—yu = lim Jg, whereJ; = cp/ (1—t)P 1t 1dt XV, (dX). (4.53)
€10 £ [x]>1/t

The statement that has weak mean 0 is equivalent to the statement that

lim I exists and equals y,;, wherel, = / Xvy (dx) (4.54)
€l0 1<|x|<1/e

(see Proposition 3.9). Using a radial decompositidsn(dé ), v?) of v,, we obtain
from (3.34) that

1
I :c/ 1—t)P1t2dt txv, (dX
y P O( ) 1<|tx|<1/e p( )

1

=cp [ EAp(d / 1-t)P 1ttt rvg (dr

p/SE p(d) 0( ) (1/t,1/(et)] n

JLerede) [ e | Ty

¢ rve (dr - '
P JSoe (1) & r

o

On the other hand,

1
J :c/ Ao(d / 1—1)P 1t 1dt rvP(dr
e =Cp | EAp(dE) | (1-1) . g (dr)
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. 1
—cp [ EA,(d / °(d / 1-t)P 1Lt
cp [[£1p(08) [ vpian [ 1y

Now, in order to prove (4.54), it suffices to show

le—J; —0 ase|0. (4.55)
We have
- ANL/(er)  pL
le—Je = cp/SE/\p(da /(Lw) rve(dr) (./m —./gv(l/r)) (1—t)P~ 2t Ldt
. . AAL/(er) o
_ cp/sz;\p(dz)./(m) rv2(dr) (/m —./Sv(lm) (L—t)P-1—1yt-Ldt,
since

1AL/ (er) 1 1
(/1/r /gv(l/r)>t dt =log(1A1/(er)) —log(1/r)+log(eV (1/r))

=log(1/e)+log(e A(1/r)) —log(1/r)+log(eV (1/r)) =0.

For any fixedr > 1

1AL/ (er) 1
</ —/ )((1—t)p‘1—1)t_1dt—>0
1/r ev(1/r)

ase | 0. Sincefy |(1—t)P~1— 1|t~ dt < o and [5|&|Ap (dE) [7° rvg(dr) = fiy=11X]
Vp(dx) < o, we can use the dominated convergence theorem to conclude (4.55).

The “if* part. We havev, € iR(dJFL,J) and pu has weak mean 0. There is
v € D(®5;) such thatvy, = @5 v. We have [, [X|v(dx) < » from Theo-
rem 4.1. We have & [ f(s)?ds< . DefineA by A= (J5 f(s)?ds)~1A, and
y=— Jix>1Xv(dx). Choosep € ID having triplet(A, Vp, p) = (A, v, y). We claim
thatp € D(Pp1) and®, 10 = p. Since (3.33) and (3.34) hold, it is enough to show
(3.35), that isy,, of (3.22) converges tg,. Hence it is enough to show (4.53). But
we have (4.54), sinca has weak mean 0. The argument in the proof of the “only
if” part proves (4.55). We obtain (4.53) from (4.54) and (4.55) combined.

(i) (1 < a < 2) The “only if" part. Let f = fy4. Similarly to the proof
of (i) and (i), v, has a radial decompositiofA (d&),u~""'ke (u)du) satisfying
(4.50). We have, .1 [X|Vp(dX) < e and fzaxp(dx) = 0 from Theorem 4.2 since
p € DPpq). Thusy, = = Jy>1XVp(dX). Hence we have (4.52), from (3.22)
and (3.35). It follows from Proposition 4.16 thd,_, [X| v, (dX) < e, that is,

Jo d8/jt(gx>11f(S)X|Vp(dX) < oo. Therefore

= - wds/ f(s)xv dx:—/ xvy, (dX).
W= [ dsf o texvp(a = [ xv(ay
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Henceu has mean O.
The “if” part . Using the argument above, it is not hard to modify the proof of the
“if” part of (ii). a0

Corollary 4.19. ForO< p< p' <wand—w < a < 2,
Kp’a D Kp/’a. (456)
Proof. This follows from Theorem 4.18 and Corollary 2.6. ad

The relation ofKp 4 and Kgya is different between in the case<dla < 2 and in
the casexr = 1.

Corollary 4.20. (i) If 1 < a < 2, then anyu € Kg_,a can be shifted to an element of
Kp7a.

(ii) If o = 1, then there iqu € K§ ; such that, for any x RY, the shifty * & of u
does not belong to .

Proof. The assertion (i) is clear from Theorems 4.15 and 4.18. To see (i}, bet
a finite measure o8such that/s€A (d&) # 0 and let

B ® dr d
v(B) = /S/\ (dE)/Z 16(18) ogrree BE AR\ (0)
with 0 < g < 1. Then ., X|v(dx) < « and hences € D(P5,). Letv = @, v.
Let 4 € ID be such thav, = v andA, andy, are arbitrary. Them € K¢ ;. But
p & Kp1, since '

= P dr q
[ (@)= [EA08) [ et = a7t [[€(08) (og(1/1)
fort < 1/2 andJ; in (4.53) is not convergent a&s| 0. O

In order to characterizl.‘\ga, we have only to deal with the case= 1, since
Kpa = Kpa fora #1.

Theorem 4.21.Let p> 0. Letu € ID. Thenu € K871 if and only if 4 has the follow-
ing two propertiesv, has a radial decompositiot (d€),u~2k (u)du) satisfying
(4.50)with a = 1 and u has weak meaf absolutely.

ProoL The “only if” part. Assumepu € ngl,_that is, U = 5p’1p for somep €
D°(®p1). Thenp € Kp1. We havev, € R(® ;) and u has weak mean 0 from
Theorem 4.18. We also havg, ., [X|Vp(dx) < e« and [gaXxp(dx) = 0. Hence
Yo = = Jjx>1XVp(dX). Hence condition (3.37) is written as

.ood . / g
/0 S’ (S) \f(s)x|>lxvp( X)

< 0
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with f = fp1, which is equivalent to

1
c /O (1—t)P~ 1t 1dt <o, (4.57)

XV, (dX
/\x\>1/t p( )

Let

1
J=c / t‘ldt/ XV, (dX
P 0 [x|>1/t p( )

Condition (4.57) is equivalent tb< oo, since

1
/ (1—t)p‘1dt/ XV (d%)
1 X >1/t

/2
Let (Vp(dr),AP) be a spherical decomposition @f such that\f, r € R<, are
probability measures o8 For eactB € Z(R%\ {0}),

1
g/ (1—t)p‘1dt/ X[V (dx) < o,
1/2 [x>1

Vu(B) = /Owds [ 1a(F($vp(d) = cp/ol(l—t)p‘lt‘zdt/Rd 15(tX) v, (dX)

1
:cp/o (1—t)P~ 2 2dt . Vp(dr)/slg(trf)/\,p(dé)

:cp/RO Vp(dr)/01(1—t)Pflrzdt/SlB(trf)Af(ds)

?

r

:cp/Ro rzfpﬁp(dr)/
+

(r —uPtu2du / 15(UE)AP (dE)
0 S
- cp/ow u*Zdu/(.u’m)(r _u)PLy2p (/S'lB(us)/\p(dz)) Up(dr).

Assuming thav, # 0, define

M(E) = cp/ (r—u)P-Ir2PAP(E)V,(dr), E < B(S).

(u,00)

Then {Al': u€ RS} is a measurable family of measures Srsuch thatA}'(S)
< oo for a.e.u> 0, sincef" u=2A{ (S)du= Jix>¢ Yu(dx) < oo for € > 0. We have
now

va(B) = [udu [ 1uE)ME).  Be BRI\ (O}

and
AB(S) = ¢ /( (TP P (),
J(u,e0
We havev, (RS ) > 0 fromv, # 0. Leta=sup{r € RS : Vp((a,)) > 0}. If a= o,
thenAl'(S) > 0 for allu € R.. If a < oo, thenAf'(S) > 0 foru < aandAf(S) =0
for u>a, and hencey ({|x| > a}) = [j50) U 2Ad (S)du= 0. Let
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= —2
Vu(du) = u“Lg 5 (u)du.

Then, redefining\' appropriately fou in avy-null set, we see thaﬁu(du),)\#) is
a spherical decomposition of;. Let

avt
| :/ u ~du
1

I =cp /1 "y ldu /( b1 P-1r2-Py (dr) /S E)\rp(dé)‘

_ T ‘ _1/4\P-12-py p ‘
_cp/ot dt /(ym)(r 1t)PYr vp(dr)/sf)\r (dé€)

/S sAﬁ‘(dé)].

We have

- c,,/olrldt ‘/(m,w)(l— 1/(rt))p1r\7p(dr)/sf)\rp(dé)‘ .

We claim that
<o & J<oo. (4.58)

In order to see this, it is enough to show that
1
[re [, @y i (e
0 (1/t,0) s

(4.59)
/(1/t’w)rvp(dr)/sg‘/\f’(df)‘ <o,

We have
1
t1dt 1—1/(rt))P = 1rv,(dr
Ay N CE O LG
. 1
:/ r\7p(dr)/ (1 —1/(rt))P L — 1/dt
J(1,0) Jar

r
_ / er(dr)/ u (1= 1/u)P 1 — 1jdy,
(1,00) 1

which is finite, since/f(1— 1/u)P~tdu = [{),(1—v)P~v2dv < o and (1 -
1/u)P~t —1~ —(p—1)/u, u— . Therefore (4.59) holds. Hence (4.58) is true.
Now recall our assumption thate Kgl. Then (3.37) is true from Proposition 3.18.
HenceJ < «. Hence, under the assumption tirgt£ 0, | < o, which means that
has weak mean iR? absolutely. Ifv, = 0, thenv, = 0 and, trivially, u has weak
mean 0 absolutely. _

The “if” part . Assume thav, € 9%(‘73'5,1) and thafu has weak mean 0 absolutely.
Thenpu has weak mean 0. Hence, it follows from Theorem 4.18 thatK, 1. Then
the proof of the “only if” part is valid except the first two lines and the last four
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lines. Assume that, # 0. Thenl < o from the assumption that has weak mean
0 absolutely. Hencé < « from (4.58), and hencg € K8A1- If vo =0, thenv, =0

andp € KJ ;. O
Let us strengthen Corollaries 4.14 and 4.19.

Theorem 4.22.(i) Let—o < a < 2and p> 0. Then

0 0
Kpa2 U Kpar Kpa2 U Kpg and G, 2 |J Kjg- (4.60)
p'e(p,°) p'e(p,) p'e(p,)

(i) If —o < B < a <2, then
0 0
Kepa2 U Kapar Kopaz2 U Kapa
a’e(a,2) a’'e(a,2)

and K 5.2 U Koo

a’e(a,2)

(4.61)

Proof. It remains only to show the inclusions are strict.

(i) Let ae RS andk(u) = (a— u)p‘ll(oya)(u). Thenk(u) is monotone of order
p on R}, but not of ordery’ on RS, for any p’ > p (Example 2.17 (a)). We have
Jo> (U2 A1) u=?~Ik(u)du < . Let A be a nonzero finite measure & Then the
measurev of polar product typgA (d¢),u=""*k(u)du) is in R(Pgq) \ R(Py ,)
for any p’ > p. This shows the third relation in (4.60) and the first and second for
a < 1. Noting thatf‘xbl IX|v(dx) < o, consideru € ID with v, = v, A, arbitrary,
andy, = — [j-1xv(dx). Theny has mean 0 and we obtain the first and second in
(4.60) from Theorems 4.18 and 4.21. B

(ii) Let —o < B < a < @’ < 2. Let us construct a measuvein R(Pg 5 ;)\
SR(GJ;,_B‘G/) independent ofa’. For this, letv be the measure with radial de-

composition (A (d€),u"9"te~Udu) where A is a nonzero finite measure. Then
Ve 9‘{(‘1"&_3.01)' sincee™ is completely monotone. Defirl¢u) by u=%—le ¥ =
u~%-1(u). Thenl(u) = u®~%e Y — 0 asu | 0. Hencel (u) is not monotone of fi-
nite order orRS,, as seen from Proposition 2.13 (iv). Hence SR((D;?B o) The
rest of the proof is the same as that of (i) ad

We add the one-to-one property@[),a.
Theorem 4.23.Let—oo < a < 2and p> 0. The mappingfpya is one-to-one.

Proof. Suppose thap,p’ € D(®p o) satisfy Ppqap = Ppap’. Then, by (3.34) of
Proposition 3.18(5 , v, = @} 4 V. Hencev, = v, follows from Theorem 4.9 (ii).
We have als@, = Ay from (3.33) of Proposition 3.18, since<0 [y’ f(s)?ds< oo,
where we writef = fp 4. It follows from (3.22), (3.35), and, = v,y that

t
im f(S)dS<Vp+/RdX(1{f(s>x<1}1{xg1})Vp(dX))
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t
= lim b f(S)dS(yp/Jr/Rd X(l{f(s)x|§1}1{|x§1})vp(dx)>-

t—oo

Hence .

lim [ f(s)(yp — Ypr)ds=0.

t—oo 0

Recall thatf(s) > 0 for 0 < s < ap 4. Now we obtainy, — y,y = 0 irrespective of
whether |y’ f(s)dsis finite or infinite. Therefore = p'. O

The continuity property of distributions iK7 , is as follows.

Theorem 4.24.(i) Let u be a nondegenerate distribution irfK with p> 0 and
o > 0. Thenpu is absolutely continuous with respect to d-dimensional Lebesgue
measure. _ _

(i) Let u = @pqp with p> 0, a <0, andp € D(Ppq). Thenyy is a finite
measure if and only i, is a finite measure. In particular, for any0anda <0,
Kp,a contains some compound Poisson distribution, which necessarily has a point
mass at the origin.

Here “u is nondegenerate” means that the supporti 6 not a subset of any
translation of any(d — 1)-dimensional linear subspace&f. This theorem gener-
alizes the fact in [38] that nondegenerate selfdecomposable distributidk$ are
absolutely continuous.

Proof of Theorem 4.24(i) The Lévy measure, satisfiesv, = 65,'57av° for some
Vo € D(Pf o). Let (A(d€),v2(dr)) be a radial decomposition of Thenv, has a
radial decompositioriA (d€), u=% kg (u)du) satisfying (4.33) (Theorem 4.9). We
have

/0 u*‘j’*lkg(u)du:cp/0 u*"*ldu./(u m)(r—u)pflr"*p”v?(dr)

r
= cp/ r"‘p“v?(dr)/ u Y r—uPldu= o,
(0,) 0
sincea >0 andvg(Rj’r) > 0. That is,v, is radially absolutely continuous and satis-
fies the divergence condition in the sense of [39]. Hamég absolutely continuous
onRY by Theorem 27.10 of [39].

(i) We havev, = d),'iavp. Then it follows from (4.29) that

vu(RY) =cp _/01(1_t)p71t7a71dt"p(Rd) =(Ma/Mp-a)Vp(RY).

Hence the assertion is obvious. a
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5 One-parameter subfamilies of{Kp q }

5.1 Kpa, KS

p.a» @andKg o for p € (0,0) with fixed o

As is shown in Theorem 4.22, the one-parameter fami{i€gy: p € (0,%)},
{Kgﬂz p e (0,)}, and{Kg,: p € (0,)} for fixed a € (—o,2) are strictly de-
creasing ap increases. The limiting classesas~ « are denoted by

Keo.a = () Kp.as (5.1)
p>0

Ko=) Kda: (5.2)
p>0

Koo =) Kpa- (5.3)
p>0

In order to analyze these classes, we use the mapgings € R, defined in Section
1.6 fromgg (t) and f4(s). Fora > 0, f4(s) is positive for alls > 0. Fora < 0 we
havefy(s)=0fors>T_4.

Asymptotic behaviors of 4 (s) are as follows.

Proposition 5.1.As s| 0,

fa(s) ~ —logs fora €R. (5.4
As s— o,

fo(s) ~explc—s), (5.5)
fa(s) ~ (as)™Y% fora >0, (5.6)
f1(s) = st —s2logs+O(s7?), (5.7)

where _ N
c:/ ufle*“du—/ ul(1-eY)du (5.8)

J1 JO

Proof. Sincegy(t) ~t~%le7! t — o, we have

im e oyt
s10 log(1/s)  t—elog(1/gq(t)) t—et-a-let/gy(t)

that is, (5.4) holds. To see (5.5), note that

:1’

1 1 o0
do(t) :/ u‘ldu+/ u‘l(e‘”—l)dqu/ u~le™Udu= —logt +c+0(1)
t t 1

ast | 0 and hence = —log fo(s) + c+0(1), s— . To see (5.6), see thgi (t) =
a1t (140(1)),t | 0, equivalentlys= a1, (s)~9(140(1)), S — .
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Assertion (5.7): We have

1 00
gl(t):/ ‘Zdu+/ “—1+u)du—/ u‘ldu+/ u2(e¥—1)du
t 1

=t14logt+0O(1), t|0
and hences = f;(s)~* +log f1(s) +O(1), s — o, which is written to
f1(s) =s 1+ s 1fi(s)log f1(s) + O(s 1f1(s)), s— 0. (5.9)
Sincefy(s) = s (14 0(1)) from (5.6), we obtain from (5.9)
f1(s) =s 1 —s2logs+o(s ?logs), s— oo.
Putting this again in (5.9), we arrive at (5.7). O

We definefy (0) = o for convenience. Thefy (s) is locally square-integrable on

R, . We have
I (/0 fa(s)dxéf’)) ,

thatis,¥, p = @ p with f = f, in (3.24) whenever the improper stochastic integral
is definable. Ifa < 0, thenDO(W,) = ZD( ) = D8(W) = ID. By virtue of Propo-
sition 5.1, the domain®?( lPa_) D(¥), andD®(¥;) are given by Theorems 4.2
and 4.4. Thu§)°(%) D(Ppa), D(Wa) =D (Ppgq), andDE(Wy) = I)e(dapa)
for all o andp. Fora > 2, ¥ is trivial.

Fora = —1 we have

git)y=e"' t>0, f1(s)=—logs, O<s<1 (5.10)

HenceW_; =Y, whereY is mentioned in Section 1.7.
DefineW} as®} in Definition 3.25 withf = fq. This means that

- / “ta-lgtgy / 1a(tX)v(dx) (5.11)
0 Rd

for B e #(R%\ {0}). ThusWt is an Y-transformation of [2]. We have® (¥k) =
D(®,), which is described by Theorem 4.1.

The following is an important identity given in Theorem 3.1 of Sato [42] with a
long proof. This related’, with @y 4.

Theorem 5.2.1f —o < o < 2and0 < p < o, then
Y = Wa—pd_)p,a = d_)p,al"ua—p- (5.12)
The prototype of this identity is

Yh=Y0=0Y
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given in Barndorff-Nielsen, Maejima, and Sato [1].
We will use the following two related facts.

Theorem 5.3.Let — < a < 2 and 0 < p < «. Suppose thap € D°(¥;). Then
p DO (W _p) DO Dpg), Wopp € D (Ppa), Ppap € D°(Wa_p), and

Wep =Y p@paP = PpaW_pp. (5.13)

This is given in Lemma 3.2 of [42].

Theorem 5.4.1f —c0o < a < 2and0 < p < m, then

WE =W oL, = o5 Wi . (5.14)
Proof. Letv e 9", Letv(), j = 1,2, be measures dk? with v()({0}) = 0 satis-

fying
v(B) = [“ds [ La(fpa(spv(ax.

0

v (B) = ./0. ds/Rd 15(fa—p(s)x)v\P (dx)

for Bc #(RY\ {0}). Then
v (B) = / {-atP-lgtyy / 1s(t)v(dy
0 R
00 1
:cp/ t*‘”p’le*tdt/ (1—u)p’1u"”ldu/ 1g(tux)v(dx)
0 0 Rd
: o 1
:cp/ v(dx)/ t*‘”pfle*tdt/ 1g(tux)(1—u)P~tu="1du
JRd J0 J0
] t
cp/ v(dx)/ e‘tdt/ 1g(vX)(t — )P~y 9~ 1dy
Rd 0 0
cp/ v(dx)/ 1B(vx)v‘°"1dv/ (t—v)P-le tdt
Rd 0 v

/mv"’*le*"dv/ 1g(vX)v(dXx).
0 Rd

Hence
v@emt o vedyh).

On the other hand,
v@emt < vWen(yr )

and _
vED(Wy) & veD(Py,)

by Propositions 4.6 and 5.1. Hence

VED(W) & VeED(DL,), PhaveED(Wr )
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and¥} = Yr @k . Proof of Y = %, Wr is similar. O

Theorem 5.5.Let—o < o < 2.
(i) Letv € D(¥}) with a radial decompositioriA (d€),vg) and letv = Yiv.
Thenv has a radial decompositiof (d&),u™ 9k (u)du), where

ke () :/R re /T g (dr). (5.15)

e
(i) Wt is one-to-one.

Proof. (i) It follows from (5.11) that

V(B) = /SA(dE)/RO Ve (dr) _/Omrafle*tls(trs)dt

:/S)\(df)/o r"vg(olr)/O u~te"Wr15(ué)du

RY

_ /S)\ (dé) /Ow 1B(u5)u*f’*lolu/w+ rae /Ty (dr).

(i) This is proved from the uniqueness in Bernstein’s theorem on Laplace trans-
forms. See Proposition 4.1 of [42]. O

Proposition 5.6.Let —o < a < 2. The mapping#;, is one-to-one.

This is proved similarly to Theorem 4.23, using the one-to-one propett) i
Theorem 5.5 (ii).

Theorem 5.7.Let —0 < a < 2. A measure) on RY belongs tadR (W) if and only
if nisin M and has a radial decompositig (d& ), u9 ks (u)du) such that

ks (u) is measurable irf and, forA-a.e.é&,
g (U) (3 & (5.16)

O

completely monotone di’. in u.

Using Bernstein’s theorem, this theorem is proved from Theorem 5.5 as Theorem
4.10 is from Theorem 4.9. In (4.5) of [4&k (u) is required not to be identically
zero inu and to tend to zero as— oo, for A-a.e.&. But it is not identically zero
automatically from the definition of radial decomposition in Proposition 3.1; it tends
to zero automatically from our definition of complete monotonicity in Section 1.5.

The following Theorem 5.8 and Proposition 5.9 are obtained in parallel to The-
orem 4.15 and Proposition 4.16. Theorem 5.8 shows that, fon0O< 2, the class
RE(Wy)N{u €1D: A, =0} is identical with the class of temperedstable distri-
butions introduced by Rasski [34]. He studied properties of the associaté&a
processes oRY in detail.

Theorem 5.8.Let—o0 < a < 2. Thenu € R¥(Y,) if and only ifu € ID and v, has
a radial decompositiorfiA (d€ ), u9~ kg (u)du) satisfying(5.16)
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Proposition 5.9.Letl < a < 2. If u € R&(W¥,), then(4.51)holds.

Theorem 5.10.(i) Let —0 < a < 1. Then®R(Wy) = RO(Wy) = RE(Wy).

(i) Leta = 1. Thenu € R(W) if and only if u € :R®(W,) and u has weak mean
0.

(i) Leta = 1. Thenu € RO(Y) if and only ifu € }E(Y) and u has weak mean
0 absolutely.

(iv) Letl < a < 2. ThenR(Wy) = RO(Wy); 1 € R(Wy) ifand only ifu € RE(Wy)
and 4 has mear®.

Proof. We use Proposition 5.1. Assertions (i) and (iv) are proved similarly to Propo-
sition 4.11 and Theorem 4.18 (jii).

(i) Method of the proof is the same as in Theorem 4.18 Tihe “only if” part.
Let u € R(H). Thenu = W p for somep € D (Y). Definel as in (4.54) and; as

ng/ t~2e 'dt txv,p (dX).
£ [tx|>1

Then
|g:/ t*Ze*tdt/ txv, (dx)
0 1<|tx|<1/e
— [ &ea,(d /mrleftdt/ e
/ §Ap(d) Jaaen) e(dr
-1/(er)
= figrotan) [ rvfen [ et
0,00) yr
%= [[Ep(a) / tle _tdt/
1/t°°
e / rv"dr/ —Letgt
/f p(dg) (0.00) £ )SV(l/f)
Hence

] /E/\ (dé)/ P(d ) (/l/(ar) /oo ) t—l —tdt
—Jp = rvP(dr - e
£ )P (Ow) & Ur ev(1/r)
ferniar) [ ez ([0 Yete - say e
= rvP (dr - et
s P (Ow) & Ur ev(1/r) ©1) ’

because, for any & € < 1 andr > 0 we can check

1/(er) o
(/ 7/ )t‘ll(o‘l) (t)dt=0.
1/r ev(1/r) '

For any fixedr > 0,

1/(er) 00 1
I(g,r) = (/ */ )t (e —1y(t))dt—0 ase|O0.
1/r ev(1/r) ’
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Now we can apply the dominated convergence theorem. Rggall|x|vp (dx) < co
and use, for > 1,

00 1 00
/0 t*1|e’t—1(oyl)(t)\dt:/o tfl(l—e*t)dt+/l t e tdt < oo

and, forO<r<landO< e <1,

1/(er) o 1/(er) o o
/l/r _/s\/(l/r) B /1/r B /1/r B _/l/(sr)’

I (g,r)] g/ t~le tdt g/ eldt=e Y < /r
1/(er) 1/(er)

Thereforel; — J; — 0 ase | 0. The rest of the proof is similar to that of the “only
if” part of Theorem 4.18 (ii). The “if” part is also similar.

(iii) Method is the same as in the proof of Theorem 4.Pfie “only if” part. Let
g€ RO(W) with u = Wip, p € DO(W). Let (vp,AP) be a spherical decomposition
of v, such that’, r € R, are probability measures & Then

Vu(B) = /0 “t-2e 1t /R La(tx)vp(d)
~ [Trretarf (e [sttrene(e)
:/Rirﬁp(dr) /Ow u*ze*“/fdufslg(us);\rp(ds)
- /Ow u‘zdu/«lm) reu/t </315(u5)/\,ﬂ(d5)) 7 (dr).
Assuming thaw, # 0, define
)\lﬁ‘(E):/(07m)re*“/r)\r"(E)\79(dr), Ec #(9).

Then{Al': ue RS } is a measurable family of measures®such that\f'(S) < o
for a.e.u> 0. MoreoverAf'(S) > 0,u € R3.. We have

Vu(B) = _/Om u’zdu/SlB(ué)/\Lﬁ‘(dfy Be #(R%\ {0}).

and, after redefining{ appropriately fouin a Lebesgue-null sefu=2du, A (d§))
is a spherical decomposition of;. Let

I:/ u—2du
1

Then

[Suf)\lﬁ‘(df)', J:/Owrzeftdt

txv, (dX
/W (X
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I:/ u‘ldu/
1 RS

I 1/t l
_/Ot dt /Rire vp(dr)/sff\rp(df) :

e U [ £AP(d)

Let

1 1
J’:/ rldt/ XV (d%) :/ tldt‘/ er(dr)/E/\rp(dE)’.
0 tx>1 0 (1/t0) s
ThenJ is finite if and only ifJ’ is finite, since
oot‘le“dt/ XV, (dX </wt‘1e‘tdt/ X|Vp (dX
/1 [x|>1/t pldX)| < 1 |x\>1/t‘ [Vo(dX)
g/ |x|vp(dr)/ e’tdt+/ |x|vp(dr)/ e tdt < o,
X<l 1/[x X>1 1

On the other hand, let

1
|’=/ tldt‘/ rel/(t’>\7p(dr)/5/\rp(d5)‘.
0 (1/t,00) JS

Thenl is finite if and only ifl” is finite, since

1 1
/ tldt [ reY/y,(dr) g/ tleV@dt [ re Y@ y,(dr) < o
0 J(o1 0 (01

and

1 _ o 1/r
/ t~1dt re‘l/(”)vp(dr):/ rvp(dr)/ t e Vgt
0 (114 1 0

00 1
:/ rﬁp(dr)/ uleYidu < oo.
1 0

Finally we claim that’ is finite if and only ifJ’ is finite. It is enough to show that

1
/ t~1dt
0

This is proved to be true because

< 00,

1) 5 =
re v (dr)—/ rvp(dr)
/<1/t,oo> P o) ©

1 _ _ 1
/ ¢t Fle Y/t 15, (dr) = / rp(dr) / (1—e M)t
0 (1/t:) (1) Ur

r
= rv, (dr)/ (1—e’1/”)u’1du§c0nst/ rvp(dr) < oo,
(1,00) P 1 (1,00) P
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since 1- e %Y = O(1/u) asu — «. The rest and the proof of the “if” part are a
simple modification of the proof of Theorem 4.21. O

Now let us expreske o, K2 4, andKg , by the ranges 0.

Theorem 5.11.Let—ow < a < 2. Then

Keo,a =R(%), (5.17)
Koo = R0(%), (5.18)
KE o = RE(Wh). (5.19)
Proof. This follows from Theorems 4.15, 4.18, 4.21, 5.8, and 5.10. O

Let us look at the ranges &, as a family with parameter.

Proposition 5.12.For —co < a < 2

RW) 2 U R, R(W)2 | R(W),

a’'e(a,2) a’e(a,2) (5 20)
R(W) 2 |J RE(Ww).
a’e(a,2)
For—co<a <2
M R(¥) 2 R(W), M ROW) 2 R(Wa),
Be(—w,a) Be(—o,a) (5.21)
(1 R&(Y¥s) 2 R(¥a).

EE(—N,G)
See Propositions 4.5, 4.8, 4.15, and 4.17 of [42].

Proposition 5.13.Let0 < a < 2.

(i) If € RE(Wy), then fza [X|P(dX) < e forall B € (0,a).

(i) There ispu € RO(W¥y) such thatfpa X% p(dx) = oo.

(iii) There isu € R°(Y,) which is not Gaussian and satisfies, for afl > 0,
Jra X9 p(dx) < .

(iv) There ispu € RO(4h) = T such that, for alla’ > 0, fa x| p(dX) = .

For (i)—(iii), see the proof of Proposition 4.10 of [42]. For (iv), see Proposition
4.12 of [42].

The ranges of¥, have the following relations with the classég and &9 of
o-stable and strictlyr-stable distributions.

Proposition 5.14.(i) Let0 < a < 1. We have

GaC () RUAW). (5.22)
Be(0,a)
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If U € &4 and it is not ad-measure, thep & RE(Y,).
(i) Letl < o < 2. We have

S c () R (5.23)
Be(0,a)

If pe&q\BY, thenu ¢ Upe(r2) %O(WB). If 4 € &y and u is not ad-measure,
thenu & RE(Wy).

See the proof of Proposition 4.7 of [42].
Remark 5.15.0pen question: Do the limiting class¢s R%(¥,) and (] RE(W¥s)
contain a distribution other than Gaussian? - o O
The final remark concerns another one-parameter subfamily.

Remark 5.16.As Theorem 4.22 says, the one-parameter famili€s_gq: o €

(B,»)}, {K27[3 q A E(B,»)}, and{Kgiﬁ_a: a € (f3,o)} are strictly decreasing
asa increases. Open question: What are the limiting classes-aso ? a0

The mapping¥; is extended to the class of mappings g with two param-
eters—eo < a < 2 andfB > 0 by Maejima and Nakahara [22]. L&, g(t) =
e U9l du, 0 < t < w. Definet = Fap(s), 0<s< Gy g(0+), bys=Gg g(t),
0<t<oo. If a <O, then defind, g(s) = 0 for s> G, g(0+). Let ¥, g = @¢ in
(3.24) with f = F, 5. They gave representation oély measures fdR (¥, g).

5.2 Kp.a, K

p.a» @NdKg o for a € (—,2) with fixed p

We use the following lemma.

Lemma 5.17.Let n be a positive integer. If fr) and £(r) are monotone of order n
onR [resp.RY ], then f(r)f2(r) is monotone of order n oR [resp.R< ].

Proof. In casen = 1, the assertion is obvious from Proposition 2.11 (i). het 2.
Assume that the assertion is true for 1 in place ofn. A function f(r) is mono-
tone of ordem on R [resp.R%] if and only if f(r) = [ ¢ (s)dswith a function¢
monotone of orden— 1 onR [resp.RY]. Let fj, j = 1,2, be monotone of orde.
Thenfj(r) = /” ¢j(s)dsand

/rm ¢1(s)ds/rw $o(t)dlt = /rw ¢l(s)ds/rs¢2(t)dt+ /rw ¢1(s)ds/: da(t)dlt
_ ./rwdt (cpz(t) ./t'w dr(9)ds+ a(t) ./tw ¢2(s)ds) ,

which shows thaf;(r) f2(r) is monotone of orden. O
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Lemma 5.18.Let n be a positive integer. If(f) is monotone of order n dR<, then,
forany a> 0, r=2f(r) is monotone of order n oR< .

Proof. Apply Lemma 5.17 forf; = f and f, = r 2, which is completely monotone
onRjg. O
Theorem 5.19.Let n be a positive integer. Leteo < a < a’ < 2. Then

Kna 2 Kna', Kia 2Kng, and Koy 2KE . (5.24)
Proof. Let us proveKs, 2 K . Let i € K, or. By Theorem 4.15y;, has a radial
decompositior{A (d&), u“’"lkf (u)du) such thak; (u) is measurable ¢, u) and
ke (u) is monotone of orden on RS in u. Notice thatu= ~tkg (u) = u‘“‘lkg(u)
with K (u) = U~ ke (u). It follows from Lemma 5.18 thak; (u) is monotone of
ordern onRS. Henceu € K q. ThusKﬁa D Kﬁ‘u,. To show the strictness of the
inclusion, letA be a non-zero finite measure Sand letk(u) = (1— u)”*ll(o.l)(u),
which is monotone of orderonRS. (Example 2.17 (a)). Let be the lévy measure
of polar product typgA (d&),u=%~1k(u)du). Let u € ID with v, = v. Thenu €
KS 4. Butp ¢ KE ,, because the functioki satisfyingu=~2k(u) = u~ =2k (u) is
expressed as

Ki(u) = u" (1 - )" 0 (u),

which is not monotone of any order &i_ by virtue of Proposition 2.13 (iv). Hence
Kia \Kg o # 0. The first and second relations in (5.24) are obtained from the third
by the use of Theorems 4.18 and 4.21. O

Remark 5.20.Open question: Is Lemma 5.18 true fo RY in place ofn? If the
answer is affirmative, then Theorem 5.19 is truegar R in place ofn. O

Iksanov, Jurek, and Schreiber [10] contains the identity
®p = (P1_1Pp)* (D1 _1p) = P1_1((Pp)+p) forpeD(®).

This is generalized to the following identity for the fami{yﬁl,a: a € (—»,2)}.
Essentially the same result is given by Cewska-Jankowska and Jurek [7]. We use
Propositions 3.19 and 3.20.

Theorem5.21let —o <a <a’' <2 If pe @0(51701), thenp € @0(51,0,),
Py g p € DO(P14q), and

5170,/ p= (51,01(5170,(;)"’—“)) * 5170, p. (5.25)

Proof. Recall that

® £ ! —a-1
/0 ICo(fLa(8)2)|ds= /0 C, (t2) [t~ Lt.
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Suppose thap € D%(®, /) and letu = @y o p. Then [ [Cp(t2)[t~7~1dt < .
Hence [y |Cp (t2)[t~~1dt < o, that is,p € DO(®y 4). Further,

1 1 1 ,
/0|Cu(tz)|t‘“‘1dt:/0 t‘“‘ldt‘/o Cp(stzs™@ ‘1ds‘

1 ! t !
:/ te aldt‘/ Cp(uzu~* "*du
0 0

1 ! l ! l !
_ /O ICp(uz) *1du/u {014t < (g’ — or)*l/o ICp(uz)u " Ldu< o,

1, t ’
g/ te *O’*ldt/ ICp(uz)|u=* *du
Jo 0

Henceu € D°(®y4). Let i = @y 4. Then

l l l ,
Cu(2 :/o Cu(tz)t_a_ldt:/o t_"’_ldt/O Co(stzs * ds
1, t , 1 / 1
0 0 0 "
1 !
= (a'- 0’)71/ Co(uz)(u™®t—utdu
0
Hence
l 1 ,
(a/_a)Cﬁ(z)+/ Cp(uz)u‘“—ldu:/ Co(uzu™® ~1du,
0 0

which is (5.25). O

The factKga 2 Kﬁa, for —o < a < a’ < 2 follows also from the theorem above.
Maejima, Matsui, and Suzuki [21] and Maejima and Ueda [28] studied essen-
tially the same class as; o with parametemr. They gave the description of the
triplet of u € Ky ¢ and a kind of decomposability which generalizes (1.2), and in-
troduced a generalization of Ornstein—Uhlenbeck type process which corresponds

to this class. An earlier paper [14] of Jurek is also related.

6 Second two-parameter extensiohp o of the classL of
selfdecomposable distributions

6.1 Apa andAf,

For—oo < a < o andp > 0 we have introducegh ¢ (t), .o (S), andAp « in Section
1.6. Namely,jpq(t), 0<t <1isdefined by (1.140p ¢ = jp.a (0+) equals—a) P
fora <0 andew for a > 0;t = lpa(s), 0 < s<bpg, if and only if s= jp (1),
0 <t <1;lpq(s) is defined to be zero itr < 0 ands > bpq; Apa = ®¢ with
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f = Ipq in (3.24). Define the transformatiohy; , of Lévy measures a&5, = ®f
in Definition 3.25 withf =1 4.
We note the following special casespf 1, then

jra(t) =01a(t), l1,a(S) = f_l.,a(3)7 (6.1)

so that the explicit forms are given in (4.19)—(4.21). TAug = 51,0, andA1 o= @.
If p>0anda =0, then

jpo(t) = cpa(—logt)?, 0<t <1, (6.2)
Ipo(s) = exp(—(Mp119)YP), s>0. (6.3)

From the definition of absolute definability we have
1
peDNpa) © / ICo (t2)](— logt)P~ 4 1dt < o,
0

It follows that
D%(Apa) DD%Npq) FO<p<p. (6.4)

Proposition 6.1.1f a > 0, then, as s— o,

lpa(s) ~ (alps) Y% (a~tlogs)P~Y/@  for p>o0. (6.5)
Proof. Let o > 0. We have

ipa(t) = a Tep(—log)P (1 +0(1),  t]o0.
Lets= jpq(t) andt =lp4(s) =1(s) = s V/91%(s). Then

s=a tcp(—logl(s)PH(s) ¥ (1+0(1)), S— 0. (6.6)
If p=1, this shows (6.5). Assume+ 1 in the following. It follows from (6.6) that
1#(5)/(P~Y) = (a~1c,)¥(P~Y(a~tlogs—logl®(s))(1+0(1)).

Definel*(s) asl?(s) = (a~1cp)Y9(a~tlogs)(P~1/91%(s). Then we see that

sowa/p-1)_ (1 B (p—1)loglogs alogl®(s)
1*(s) pl_<1 iogs logs logs >(1+o(1)), (6.7)

whereB is a constant independent sfLet s, — o be a sequence such tHat(s,)
tends to som€ € [0,]. If C is 0 or, then we have a contradiction from (6.7)
whenp > 1 as well as whem < 1. HenceC # 0,%. Then we obtailC = 1 again
from (6.7). It follows that *(s) — 1 ass — oo, which shows (6.5). O

Theorem 6.2.Let —o < a < o0 and p> 0. The domain of/\'@a is as follows:
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D(Npq) =M if a <0, (6.8)
D(Apo) ={vem': [,-,(log|x)Pv(dX) <} if a=0, (6.9)
D(Aga) = {vEM-: [l o(log|x|)P x| Tv(dX) < o}

if0<a<?2, (6.10)
D(Afq)={&} ifa>2 (6.11)

Recall that/\lﬁa = 51L,a and notice that this theorem for= 1 is consistent with
Theorem 4.1.

Proof of Theorem 6.4 et 0< a < 2. Givenv, we express the measuren Defini-
tion 3.25forf =14 as

1
U(B) =cp / (—logt)P~ 1t~ 1dt / L 1g(t9v(dx) (6.12)
0 R
for B #(RY\ {0}). We use the fact that
u
/ (—logt)P~ 19t ~ (q+1)"1(—logu)P~1ut u| o0,
0
forpeR,q> -1, (6.13)
1
/ (~logt)P 1t9dt ~ (—q— 1) X(~logu)® ™1, u o0,
u
forp>0,q< —1. (6.14)

Thus

1
/ IXI2V(dX) = ¢, / (—logt)* 1 dt [ [txv(dx)
x|<1 0 ltx|<1

, LAW/X) i
:cp/ IX| v(dx)/ (—logt)P~*t*%dt
Rd 0

< cl/ x/2v(d) +CZ/ (log[x))P~1x v(dX),
[x|<2 [x|>2

/ V(dx) = ¢ /l(—lo HP--a1gt [ y(dy)
X>1 P g

[tx|>1
1
—cp / v(dx) / (—logt)P~ 1t~ 91dt
Ix/>1 1/1¥
<C3 v(dx)+C4/ (log|x|)P~t|x|v(dx).
J1<|x|<2 JIx|>2

HereC,,...,C,4 are positive constants. Similarly we can show the reverse estimates.
Hence (6.10) is true.
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If a <0, then (6.8) comes frorhy o < . If a =0, then we have (6.9) as in
Theorem 5.15 of [41] and Proposition 4.3 of [43]df> 2, then we have (6.11) by
a similar argument. O

Let us study the domains @ty 4.

Theorem 6.3.Let—o0 < a < o and p> 0.
() If a <0, then

D°(Npa) =D(ANpa) =D%(Apa) = ID.
(i) If 0< a < 2, then
D%Apa) ={P €ID: vy, €D(A54)}-
(i) If 0<a < 1,then
D°(Apa) = D(Apa) = D(Ap.a)-
(iv) If a =1and p> 1, then

D%(Ap1) S D(Ap1) G D(Apa),
D(Ap1) ={p€ID: vy €D(A51), fpaxp(dX) =0,

6.15
lim x(log(|x| A a))Pv, (dx) exists inRY}, (6.15)
a—o Jix>1
D%Np1) ={pcID: vy € 9(/\;%,1)7 /Rd xp(dx) =0,
(6.16)

1
/ (—Iogt)p‘lt‘ldt‘/ XVp (dX)| < 0}
0 [x|>1/t

W If l<a <2 then

D%(Apa) =D(Apa) ={P €ID: vp €D(As4), fpaxp(dX) =0}
G D%(Apa).

(vi) If a > 2, then
QO(AM) =D (Apa) = {0} ;E D%(ANpa) =1{dy: v€ Rd}-

Proof. If 1 < a < 2 orif a =1 with p> 1, then q |X|p(dX) < o for p satisfying
Vp € BD(/\‘%,O,) (see Theorem 6.2). We writgs) = 1,4 (s) for simplicity. We use
C1,Cy,. .. for positive constants.

(i) Note thatbp o < o for a < 0.

(i) Note that [y’ 1(s)?ds< « for 0 < a < 2 by (6.5) of Proposition 6.1.

(iii) Let 0 < a < 1. Letp € D¥(Ap,q). We havefy | (s)ds< o from (6.5). Choos-
iNg Sso = jp.a(to) > 0 such that(s) < 1 fors> sp, we have
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/ |(5)dS/Rd IX(Lgiom<ay — Lw<1y) Vo (dX)

So
= lx)lsds / x|1 \% dXJr/ x|1 % dX)
/So () < |x\§1| | {1(s)x|>1} p( ) |x\>1| | {1(s)x|<1} P( )

B /so '(S)ds/‘xbl XL sy Vo (dX)
1t

0
= Cp/o (*'09t)p_lt_adt/‘x‘>l\Xll{\tx|51}"p(dx)

toA(1/1X) .
_ cp/ |x|vp(dx)/ (—logt)P~ 1t~ dt
[x|>1 0
1/ .
:cl/ |x|vp(dx)+cp/ |x|vp(dx)/ (—logt)P 1t~
x|>1 [x|>1/to 0

~Co+Gs [ 1 10g )P v () < o
. 1

[x|>1/tp

by (6.13) and (6.10). Hence it follows from Proposition 3.18 (iii) that ”DO(Apla).
ThusD®(Apa) C D°(Apq) and the assertion is true. In the case: 0, the argument
is similar; it is done in Theorem 5.15 of [41] and Proposition 4.3 of [43].

(iv) Let a =1 andp > 1. Assume thap € ©(Ap1). Theny, given by

t
Vix =/0 I(s)d3<vp+/Rd X(1{||<s>x|31}—1{|x<1}>Vp(dX))
is convergent ilRY ast — oo (Proposition 3.18). Since

/Rdx(l{|l(s)x|§1}_1{\x\§1})vp(dx)_’/ XVp(dXx), S— o,

JIx>1

and sincefy’ | (s)ds= « from (6.5), we havey, = — x>1XVp(dx), that is, p has
mean 0. Hence we have, with=(t),

t t
o= [ 19ds [ x(Lsmey ol == [ I(s)dsA(s)Xblxvp(dx)
1

= —cp/E (—logt)P~1t~1dt XV (dX)

[tx|>1

=—C XV dx/ —logt)P~1t~1dt
p/\x|>1 p(dX) s\/(1/|x\)( gt)

S~ /x|>1x<'°g<'x' A (1/£)))Pp(dX).

Thereforep is in the right-hand side of (6.15). Converselypifs in the right-hand
side of (6.15), then it follows from the equalities above thais convergent, hence
pEDNp1).
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Assume thap € D°(Ap1). Thenp € D(Ap1), Vp € ’D(A,%_yl), andp has mean 0.
We have

o >/0 [(s)ds|yp + /Rd X(Lgex<1y — Lyx<1y) Vo (dx)

:/0 [(s)ds /“(S>X‘>1xvp(dx) /“Xblxvp(dx)

andp is in the right-hand side of (6.16). These equalities also show the converse.
(v) Let 1< o < 2. Then [y’ I(s)ds= . If p € D(Apq), then, by the same ar-
gument,y, = — f;.1XVp(dx), that is,p has mean 0. Ip € ID has mean 0 and

Vp €D(Afq), thenp € DO(Apq), since
| 1)+ [ X ~ Linsy) vo(dx

= ooI sds/ XV, (dX

/0 ( ) [I(s)x|>1 p( )
1

gcp/ \x|vp(dx)/ (—logt)P~1t~9dt
X>1 1/

<Cq [ (log )P X" vp(d) < o2
[x|>1

)

1
=¢Cp [ (—logt)P Yt tdt
0

1
=cp | (—logt)P~t~%dt
0

d
/‘txblx"p( X)

from (6.14) and (6.10).
(vi) Let a > 2. We have[;’|(s)?ds= o as well as[;’|(s)ds= « from (6.5).
Combining this with (6.11), we obtain the result. ad

Remark 6.4. Open problem: Describe the domains/gf, for 0 < p < 1. a

Remark 6.5. Consider the case whece= 1 andp > 1. In this case,
D(Ap1) S {p € ID: vp € D(AL), /Rd xp(dx) = 0} (6.17)

Indeed, let = &, & €S qe (p,p+1], and

v(B) = /SA (dé)/: 15(r&)r2(logr)~9dr.

Then [, [X|v(dx) <. Sinceq> p, v € 53(/\',54) by Theorem 6.2. Lep € ID be
such that, arbitrary,v, = v, andy, = —f|x\>1XV(dX)- Thenp is in the right-hand
side of (6.17), bup & D(Ap1) by virtue of (6.15), because

/‘  X(100( 1 (1/)))Pup(e) = p /‘l(—logt)p’ltfldt XV (dX)

x>/t

1 oo
= pfo/ (—Iogt)pfltfldt/ (logr)~9~dr
€ (1/t)v2
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_ P

-1 81(— logt)P~1t~1(—log(t A (1/2))) 1 9dt,

which tends to the infinity point in the direction é§ ase | 0, sinceq< p+1. O

6.2 Range ofA;

Theorem 6.6.Let —0 < o < 2and p> 0.
(i) Letv € ’D(A,%'a) with a radial decompositiofA (d& ), vg) and letv = Ab’av.
Thenv has a radial decompositiofh (d€),u~9"h (logu)du), where

he (y) :cp/( oo)(W—y)”*le""”vg(dw), YER, (6.18)
vg(E):/(yw) 1e(logr)ve (dr), E € Z(R). (6.19)

(ii) A\f 4 is one-to-one.

Proof. (i) It follows from (6.12) that

fcp//\ (dé€) / ) dr)/Ol(fIogt)p‘lt‘“‘llg(trf)dt
:cp//\ (d&) / m)r vE(dr)/r(Iog(r/u))pflu*afllB(uE)du
= cp [A(08) [0 Ma(ug)au [ (loglr/u)® " ve(an)

= /)\ (d&) / g(U&)u" " *hg (logu)du,

whereh; is defined by (6.18) and (6.19).
(ii) Similarly to the proof of Theorem 4.9 (ii), we see that there is a measurable

functionc(&) satisfying 0< c(&) < o, c(&)A’(d&) = A (d§), andu*"*lh%(log u)du

= ¢(&)u 9 thg(logu)du on R3. for A-a.e.&. Thus h’f(y)dy: c(&é)hg (y)dy on

R for A-a.e.&. ForA-a.e.&, hg(logu)du andh’g(logu)du are locally finite mea-
sures orRS , hencehg (y)dy andh’f (y)dy are locally finite measures d&, and also
e"""vé(dw) ande”Wvéﬁ(dW) are locally finite measures dR. Now from Theorem
2.10 on the one-to-one property Idfwe obtaine“Wvéﬁ(dw) = c(E)e"Wvg (dw) for
A-a.e.d. Hencevé =c(&)vg for A-a.e.&. This shows that’ = v. O

Theorem 6.7.Let—o < a < 2and p> 0. A measure) onRY belongs th(A[';,a) if
and only if n is in 9" and has a radial decompositigiA (d€ ),u~%~h (logu)du)
such that
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hg (y) is measurable irié,y) and, forA-a.e.é, (6.20)
monotone of order p oR iny. '

Proof. This follows from Theorem 6.6. We can supply the details, modifying the
proof of Theorem 4.10. ad

Notice that monotonicity of ordep on RS and onR appears in (4.34) and in
(6.20), respectively. This is why we have studied in Section 2 monotonicii§jon
andR both.

6.3 Classetpq, LY

e
D0t and Lpﬂ

Define, for—oo < o < 2 andp > 0,

Lpa = Lpa(RY) = R(Apa), (6.21)
Loa =Lpa(RY) =R(Apa), (6.22)
Lpa = Lg,a(Rd) =R%(Apa)- (6.23)

The notatiornLy o for positive integers is already introduced in Section 1.2 as the
classes oh times selfdecomposable distributions, but this is consistent with (6.21)
for p=nanda = 0, because the known characterization of tiée} measures of

n times selfdecomposable distributions in Theorem 3.2 of Sato [37] coincides with
the description oLy in Theorem 6.12. Another proof is to use the expression
(6.3) forlno and to recall the result mentioned in Section 1.2. A third proof is to use
Np1q,0 = Ng,0/\p,o to be shown in Theorem 7.3 (ii).

Proposition 6.8.We have

Lha =Lpa=Lps for—m<a<i, (6.24)
L1 CLp1CLSy, (6.25)
L g=LpaCLY, forl<a<2 (6.26)

Proof. This is parallel to Proposition 4.11. ForOa < 1, (6.24) is proved as in
Proposition 4.5, using Theorem 6.3 instead of Theorem 4.2. Foral< 2, use
Theorem 6.3 and (3.28). O

Theorem 6.9.Let —o < a < 2 and p> 0. Thenp € Ly, if and only if 4 € 1D
and its Llevy measure/, has a radial decompositiof (d€),u~%~hg (logu)du)
satisfying(6.20)

Proof. Use Proposition 3.27 and Theorem 6.7. O

Proposition 6.10.Let0O< a < 2, p> 0, andu € wa. Then



74 Ken-iti Sato
/d XPu(dx) <o forall B € (0,a). (6.27)
R

Proof. We havey,, = /\llia" for somev € Q(Arlia) and

1
/ IXP v (dX) = cp / (—logt)* 1t dt [ [tx|Pv(dx)
x|>1 0

[tx|>1

1
—c / X/Pv(dx) / (—logt)P~1tP-a 1t
X1 0

< const/ (log[x)P~2[x|7v(dx) <
[x|>1

by (6.13) and Theorem 6.2. O

Remark 6.11.Let 0< o < 2 andp > 0.
(i) There isp € L 4 such thatfpa [X|” p(dX) = co.
y (>ii)0There is a non-Gaussign € Lgﬁa(Rd) such thatfgd [X|* p(dx) < oo for all
Indeed, (i) is a consequence of Theorem 7.11 and Proposition 7.16 in the later
section. To see (ii), chood#y) = (—y)p‘ll(,m’o) (y) and considey such thatvy,
has a radial decompositigiA ,u~%*h(logu)du) = (A,u~*"*(—logu)P 119 4 (u)
du) with a nonzero finite measure O

We give characterization dfy, o for a # 1. Recall thatpq = L9 5 if o # 1.

Theorem 6.12.Letu € ID.

(i) Let—o <o <1land p>0. Thenu € Ly 4 if and only if v, has a radial
decompositiorfA (d€),u~%~*h; (logu)du) satisfying(6.20)

(i) Letl<a <2and p>0. Thenu € L4 if and only if v, has a radial
decompositioA (d¢), u‘“‘lhg (logu)du) satisfying(6.20)and i has meard.
Proof. (i) Use Proposition 6.8 and Theorem 6.9.

(i) Let y € Lpq. Thenp € L, from (6.26), and Theorem 6.9 says that
has ()\(df),u‘“‘lhg(logu)du) satisfying (6.20). We haver = Ay op for some
p € D(Apa). Thus, by Theorems 6.2 and 6@@>2(Iog|x|)p*1|x|“vp(dx) < o and

JraXp(dx) = 0. Hencey, = — [ XVp(dx). Letl =Ip q. It follows from Proposi-
tion 5.9 that

/ ds/ 1(9)X|vp (dx) < oo, (6.28)
0 [1(s)x|>1
since this integral equalf,. ; [x|vy(dX). It follows that
=— oods/ I(s)xv,(dX), 6.29
== dsf . wp(x (6.29)
and hencey = — .1 XV, (dX), that is,u has mean 0.

Conversely, assume tha} has the property stated and thahas mean 0. Then
by Theorem 6.9u € L$, and vy, € R(AS4). Choosev such thatAl v = v.
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Then (6.28) and (6.29) hold with in place ofv,. Let A= (/5 lp.a(S)2ds) 1A,
andy = — [ xv(dx). Thenp € ID with triplet (A, v, y) belongs td® (Ap,q ) from
Theorem 6.3 and we havi, o p = . 0

Remark 6.13.0pen problem: Describe the clasdgsi(RY) and L, (RY) for p
> 0. O

Theorem 6.14.Let —o0 < a < 2and0 < p < . The mapping\p o is one-to-one.

This is proved from Theorem 6.6 (ii) in the same way as Theorem 4.23.
Here is the continuity property of distributionslif 4.

Theorem 6.15.(i) Let u be a nondegenerate distribution irﬁ[, with0<a <2
and p> 0. Thenu is absolutely continuous with respect to d-dimensional Lebesgue
measure.

(i) Let = Ap o p with a < 0and p> 0. Theny,, is a finite measure if and only
if v, is afinite measure. In particular, for any < 0 and p> 0, Lp o contains some
compound Poisson distribution.

Proof. This is proved by the same idea as Theorem 4.24. The key formulas are, for
v0 andp similarly defined,

/0 u‘“‘lhg(logu)du:cp/

r
r“vg(dr)/ U= L(log(r /u))P~*du= oo
(0) 0

fora > 0and
Vu(RY) = (—a) Py, (RY)

fora < 0. a

6.4 Relation betweeK, s andLpq

We haveKi g = L1a, KP, =19 ,, andKs, =L, for —eo < a < 2 and, in partic-
ular,K190=L10=L. See (1.18), (1.19), and (6.1).

Theorem 6.16.Let n be an integep 2. Then

Ky 2L, for—w<a<2 (6.30)
Kna 2 Lna forae(—»,1)U(1,2), (6.31)
Kig 2Lhg forae (—w,1)U(1,2). (6.32)

Proof. To seeKf, O L; 4, compare Theorems 4.15 and 6.9; we can see that it is
enough to show that Hi(y) is a function monotone of orderon R, thenh(logu) is
monotone of orden onR<.. Let us prove this assertion.iif= 1, then the assertion

is clear from Proposition 2.11 (i). Let> 2 and assume that the assertion is true for
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n—1in place ofn. Let h(y) be monotone of ordar onR. Thenh(y) = _];” ¢(s)ds
with ¢ monotone of orden— 1 onR,

h(logu) = /

logu

00

b(s)ds— /:o 6 (logt)tLdt,

and¢(logt) is monotone of orden— 1 onRf . Sincet ! is completely monotone
onR<, ¢(logt)t 1 is monotone of ordem— 1 onR3. by Lemma 5.18. Thul(logu)
is monotone of ordem on RS . HenceKs, D Lf 4.

Next, let us show that$ , \ LS , # 0 forn> 2. Let

K(U) = (1— u)" M0 (u) = /( o (57U
which is monotone of orderonR?.. Let
h(y) = k(€) = (1-&)" 1w g)(¥).
Thenh(y) is not monotone of orderonR, since
h'(y)=(n-1)(n-2)(1-&)"3¥ - (n-1)(1-&)" 2% <0
for y sufficiently close to—c. Hence, for any finite measuieon S, the Levy mea-
sure with radial decompositiaf ,u~*~tk(u)du) belongs tdR (P 4) \ R(AL ).
Fora € (—,1), (6.31) and (6.32) follow from (6.30) by the equalities (4.38) and

(6.24). Fora € (1,2), (6.31) and (6.32) follow from (6.30) by adding the condition
of having mean 0 in Theorems 4.18 and 6.12. ad

Remark 6.17.Open questions: (i) Is it true that,1 2 L1 and Kr?,l 2 '—2,1 for
integersn > 27?
(if) What is the relation betweel, o andLp o for non-integemp > 0? a

7 One-parameter subfamilies of{L o }

7.1Lpa, L%,a, andL$ , for p € (0,) with fixed a

We give a basic relation.
Theorem 7.1.Let—o < a0 < 2, p> 0, and g> 0. Then
Ngal\pa =Npiqa- (7.1)

Proof. First note that a special case of (2.4) with= & gives

0
CpCq /U (=)%Y (r —u)Pdr = cpig(—u)PTI, u<o,
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that is, for O<w< 1,

CpCq /l(— logu)4(—log(w/u))P~tu~tdu = cp;o(—logw)Pra-1, (7.2)

w

Givenv € M-(RY), letv()({0}) =0, j = 1,2, and
v (B) :/Owds/Rd 18(1p.a () v(dX),
v (B) = /Owds/Rd 18(lqa (99X v® (dx)

for B #(RY\ {0}). Then

v (B) = cq/ol(—Iog]u)“*lu*"’*ldu/Rd 1g(ux)vM (dx)
— cCp /0 " (~logu)®Lu-a-1dy /0 " (—logt)P-1t-a-1dt /R L Is(Utxv(dx)
1 u
= cqcp/O (flogu)q‘lu‘ldu/O (fIog(w/u))p‘lw‘o"ldw/]Rd 1g(wx)v(dx)
-1 1
= cqcp/]Rd v(dx)/0 1B(wx)w*“*1dw/ (—logu)4~t(—log(w/u))P~tutdu
— Cpiq /O "~ logw)Pr- w9 g /R L Is(wxv(d),

using (7.2). Hence
v@emt o veDAS4q)-

On the other hand,
v@emt o vWed(AL,).

Hence

VEDASiqa) & VY EDAL), VED(ASY), Afgv =V

It follows thatD (A5, q.a) = D(A§eApa) and that, ifv € D(AS, g q), thenAl, o 4V
=Nga\paV- O

Corollary 7.2. We have
R(Apa) DR(Ay4) for —o<a<2ando<p<p. (7.3)
This corollary follows also from Theorem 6.7.

Theorem 7.3.Let—o < o < 2, p> 0, and g> O.
(i) If p € D%(Apiqa), thenp € DO(Apq), Apap € DO(Aqa), and

Ap+aa P =Nga\pa P (7.4)
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(i) If a # 1, then
Ap+q’a - /\q’a/\p7a (7.5)

Proof. (i) Letp € ©°(Ap+q,a). As in the proof of Theorem 7.1,

1 1
cpcq/0 (—Iogu)“*lu*"’*ldu/0 ICp (tuz)|(1—t)P 1t~ 9 dt
1
—peq [ [CH(WR| (1w
0

which is finite sinceh € ®°(Ap.q.«). Then, we can use Fubini's theorem and obtain

1 1
coca [ (~logu)® hu “ Tau [ Cp(tug(1-1)° el
1
=Cpiq / Cp(W2)(1—w)PHatw @ 1dw
0

We havep € D°(Apq) from (6.4), and

1
€ [ [Chsap Uz (~logu)®tu-edy
[,
1 1
< ot / (—logu)®tu=a-1duy / ICo (tuz)|(1— )P 1t~ 1dt < o,
0 0

HenceAp qap € D°(Aqq) and (7.4) holds.

(i) Let a # 1. Then we hav® (Ar o) = QO(Am) forallr > 0 by Theorem 6.3. If
P € D(Apiga) thenp € D(Agap.a) andAgaAp.aP = Apiqap by (i). It remains
to show tha® (AqaAp.a) C D(Aptga)- Letp € D(Aqa/pa). This means that €
D(Apa) andApap € D(Aqa). Hencevp € D(AS ) andAg 4Vp € D(Ag4). Hence
we havev, € D(Ag, 4 ) from Theorem 7.1. Henge € D%(Ap;qq). Now, if o < 1,
thenp € D (Apiqa) SINCED®(Aprqa) =D (Apsqa)- If a > 1, thenfpaxp(dx) =0
from p € ©(Apa), using Theorem 6.3, and henpe= ©(Apiq.a)- O

Corollary 7.4. For any positive integer n and € (—,1)U(1,2), we have

/\n’o - (D (D al’ld /\n’a - (D]_,g (Dl,Cl 3

n n

where® is defined by(1.11)

Proof. Combine (7.5) with; o = ® andA ¢ = @1 4. 0
Remark 7.5. Open question: Is (7.5) true also for=1 ?

Corollary 7.6. For —o < o < 2and0< p< p/

LD DLlyy and L5,DL%,. (7.6)
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Proof. Use Corollary 7.2 and Theorem 7.3 (i). O
We can strengthen Corollary 7.6 as follows.

Theorem 7.7.For —o < a < 2and p> 0

p0r¢ U Loa and 15,2 |J L%, (7.7)
p'e(p,») p'e(p,»)

Proof. Let A be a nonzero finite measure &and leth(y) = (—y)pfll(,mio) (y).
Thenh(logu) = (—logu) p‘11(0}1)(u). The measure of polar product typéA (d§),
u~"*h(logu)du) belongs taR (A5 o) \Up=pR(Ay o), sincehg (y) is monotone of
orderp but not of orderp’ (Example 2.17 (a)). It follows thdt? ; \ Uy~ p L‘;,’a #0.

If a <1, then this also says thaf; \Up.pLY 4 # 0. If 1 < a < 2, then let
p € 1D be such thav,, = v and, recalling thaff,., [X|v(dX) < e, choosey;, =

— Jix>1Xv(dX) to see thap € LY o \ Uy pLy 4 by Theorem 6.12. Assuming that

a =1, letA satisfy [;§A(d€) =0 and letp € ID be such that/\blvp =v and
¥p = 0. We consider the proof of Theorem 6.7 and see thatan be chosen to be
of polar product type with the same Hence

/Rd X(Litpa(omi=1r ~ Hix=ap)Vp(dX) =0,

which shows thap € ’DO(/\p 1) by Proposition 3.18. Thug = Ap1p hasv, =v

andy, = 0 and belongs mpl\Up/>p .1 H

Remark 7.8.SinceLpq = L) 4 for a € (—,1)U(1,2), Lpq has the properties
similar to Corollary 7.6 and Theorem 7.7 df # 1. Open question: Is it true that
LpiDLlysforO<p<pandlps 2 Uy-plpiforp>07? O

If a <0,thenthe clasbg_,a is continuous for decreasimgin the following sense.

Theorem 7.9.Let—o0 < a < 0and p> 0. Then

N Loa=Lpa (7.8)
qs(0,p)
Proof. Let i € Nge(0,p) L3.- Itis enough to prove that € LS ;. Let (A (d&),u* 1
hg (logu)du) be a radial decomposition of;. For anyq € (0, p) there isa? eD(19)
such that

he(y)=ca | (s-y)%tof(dy, yeR.

Fix & for the moment and omit the subscrfptFor —co < a<b < o

b b
[, hay= [ (0% @) 2 s [ (s-a)%%as),
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as in the proof of Proposition 2.1. Hence

" hy)dy= e [ (s-at 19009 > cq10%fa),

a—1 [a, b]

Hence by the diagonal method we can select a sequgnt® such thato% con-
verges vaguely to a locally finite measur@ on R, that is,

/f(s)aq”(ds)—>/ f(50P(ds), n—oo
R R

for any continuous functiorf on R with compact support. We claim thatP
MP(R). We have, for 6< B < g < p,

o0 > /wuf"*lh(logu)du:/me*"yh(y)dyz'/ h(y)dy

J1 0 0

© S
— _y\9-144 — q _y)a-1
) dver| | (s—yotas = [ odsey [ (s-y)dy
— q q

Cq’Ll/(o@)qu (ds) 20(‘+l/(17m)sﬁa (ds).

Thus, for any continuous functiay(s) < s# with compact support ifi1, «),

/100 u ? th(logu)du> cq+1/ g(s)o%(ds).

(L)

Lettingqg = g, andn — o, we get the same inequality with® in place ofg9. Hence
/ u~%h(logu)du > cp+1/( )sﬁap(ds).
J1 1,00

Letting 3 T p, we can replace8 in this inequality byp. This shows thatoP €
9P (R). Next we claim that

h(y)dy= (1Pa®)(dy), (7.9)
that is,
h(y)ch/< )(s-y)P*lap(ds) fora.eyeR.
y700

If this is shown, then we obtaig € Lpq.

The proof of (7.9) is as follows. Let(dy) = h(y)dy. Note thatt € D(I%). For
largenwe havd P~ 7 = |P~W|Ihgth = |Pgh  Asn— oo, | P~On7 tends tar vaguely
onR by Lemma 2.9. So, it is enough to show that

[Pg% — [PgP (vaguely onR), n— oo, (7.10)

We write g for gp. Let f be a continuous function dR with support in[a,b]. We
have
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/f(r)lpaq(dr):/ f(r)dr/( )cp(s—r)pfloQ(ds)
R r,00
S 0
:/ Jq(ds)/ cp(s—r)p’lf(r)dr:/ aq(ds)/ cpuP 1 (s—u)du
R —o0 R 0
:/ 09(dy) -+ [ 0(d9)---= I+
(700*,50] (50700)
If o is a continuity point ofoP, then
J1—>/ ap(ds)/ cpuP 1 (s—u)duy,
(_wv&)] 0
sincec® — gP vaguely onR. Concerningl,, we have

S—a
< ||l‘||cp/57b uPtdu~||fl|cp(b—a)sP L, s— 0.

/ cpuP L (s— u)du
0

LetO0< € < pA L. Let us show that

sup s 1g9ds) -0, c— . (7.11)
ge(p—¢,p) 7 (€:)

Letc> 1. We have

[ hdy=cqin [ (s—cjods

J(c,0)

_co)d
>c SFHMGq ds) >c 2*p/ sP~€g9(ds),
> Cpit /( I = CACCEL AR LA

since, as | 2c, (s—c¢)9/sP~¢ = (s— )9 PT¢(1—c/s)P¢ decreases to PécdPtHe
> 27P*t€ > 2-P |t follows that

| nwidy=cpa2? [ ia%ds),
C

(2c,)

which proves (7.11). Thereford is uniformly small if 55 is close toeo, and we
obtain (7.10). O

Remark 7.10.0pen question: Can one extend (7.8) to the casen0< 2 ? O

As L?m andLy , are decreasing with respectpowe define, for-o < a < 2,

Lo =Loa®R) = (L3, (7.12)
p>0

LS a=LS (R = (LS, (7.13)
p>0

These are described hy, andLE, E € %((0,2)), introduced in Section 1.4.
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Theorem 7.11.Descriptions of € , for all a and LY, , for a # 1 are as follows.

LSg=Lle for—e<a<o, (7.14)
L&, =L?  for0<a<2 (7.15)
|_0 =L8, for—w<a<l, (7.16)

—{uell@?: [axu(dx) =0} forl<a<2. (7.17)

Proof. (7.14) and (7.15): First, notice thaf, ; = Nn_12. LRg- Let 4 € L3 4.
Use Theorem 6.9. Then, for each= 1,2,..., v, has a radial decomposition

(A (d&),u=*h{" (logu)du), whereh{" (y) is measurable ifié ) and, forA (V-
a.el, hE (y) is monotone of ordem onR. It follows from Proposition 3.1 that we
can choosa (M = A andhgm = hg independently ofi. Thus, forA-a. e.&, hg(y) is
completely monotone oR. We choose a modification &f (y) completely mono-

tone onR for all ¢ € S. Further, we choosk to be a probability measure. Fgye R,
the functionhg (yo +y), y € R, is completely monotone dR? and hence

hf(yo+)’)=/(o s, y>0

)

with a unique measurg”® on (0,) by Bernstein’s theorem (recall that our defini-
tion of complete monotonicity involves (yo+y) — 0 asy — o, S0 thaﬂ',fy0 has no
mass at 0). In particular, we hai/'§ foryo=0. If yp < 0, then

() =hg o+ (y—yo) = [ e PrXeep), y>0

]

and henceoPr;°(dg) = r,’(dpB). Thus

h.s(yo+y):/(0 )e BoYBrO(dB), yo<0,y>0.

Therefore
h :/ e YBrlwp), eR.
E(Y) (0.) & (dB) y

We see tha{r,%: & € S} is a measurable family. Indeed, i’ is a continuous
measure for ever§, then it is proved from the inversion formula (see [55], p. 285)

lys ( _y) m
m!

| rép) = im 3

where[yg is the largest integet ys If not, it is proved by approximatlng 0 by the
convolutions with continuous measures. We have

(d/dy)™(hg (), >0,
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1
oo>/H X|?vy, (dx) ://\ (d&) / u'~?hg (logu)du
X/ < 0

—/)\ dé/ ul- “du/ ) uPro(dp)
_/)\df/udu/ uPre(dp)
_/)\ (dé€) / dB)/ uBdu,

where we define
(€)= [ 1@ BIrAEB). Ec ().

Since [y ulPdu= w for B > 2, we obtains ([2,%)) = 0 for A-a. e.£. We have
[ )= [ree) [ @-p)irp)
JIx|<1 S J(a,2)

We also have

oo>/' L(dx) = /A dE/ u~9-h, (logu)du
x\>1

—//\ (dé€) / T 1du/ ., uPro(dp)

—//\ dE/ 1du/ ) uPre(dp)

= [ A(d§) Me(dB) [ uPldu,
= Jpe) [, rees) [

and [;°u=P~ldu= o for B < 0. Hence, ifa < 0, thenl((a,0]) =0 forA-a.e.§.
For anya < 2 we have

_ -1
[0 = [a@e) [ pri(ap)
Similarly, it follows from
_ / A(dé) / " 1(u€)u g (logu)du (7.18)
S 0

that
_ ~B-1
— /S)\ (df)/(avoﬁz) Fg(dB)/o 1g(ué)uP1du. (7.19)

The measure\ (d€)l(dB) on Sx (a Vv 0,2) is written to I (dB)Ag(d&), where
" (dB) is a measure ofu Vv 0, 2) satisfying
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[ BB s <o
(av0,2)

and {Ag: B € (aVv0,2)} is a measurable family of probability measures $n

ThereforeL 8, , c L&%?,
Conversely, suppose thate L9V02 with Lévy measurey, satisfying (1.6).

Then, definingA (d¢) and I’z (dB) in the converse direction and lettifg (y) =

Jiavoz €YF~:(dB), we see (7.19) and then (7.18) with(y) completely

monotone orR. Hencep € LS, . This completes the proof of (7.14) and (7.15).
Assertions (7.16) and (7.17) follow from Theorem 6.12 (i) and (ii), respectively.

Note that ifu € L%? with 1 < a < 2, then

/\X\>1‘X‘V“(dx)7/<a,2)r(dﬁ)/s)‘5(df)/1 ' dri/(a,z)(ﬁ' 1)~ r(dp) <

and hencega [X|p(dX) < co. O

Remark 7.12.0pen problem: Give the description of the cla§,§l. O

Remark 7.13.0pen question: Does there exist a functigs), s> 0, such thaLooo’a
orLg o is equal tdR(®s), RO(®s), or Me(@¢)? In particular, folLe, = LOOO’O =Lgo
this is a long-standing question. ad

Theorem 7.14.We have

Kea 2leg for—o<a<2 (7.20)
Ko 2194 forae(—w,1)U(1,2). (7.21)

Proof. We know thatu € K¢ , if and only if v, has radial decompositioi ua-1

kg (u)du) with kg (u) completely monotone oR<.. On the other hangy € Lg, , if
and only if v, has radial decompositiofd,u~%~thg (logu)du) with hg(y) com-
pletely monotone ofR. Since the complete monotonicity lof (y) onR implies that

of hg (logu) onRS, we haveKs; , O LE, . To see the strictness of the inclusion, use
the functionsh(y) = e ¢ andk(u) = h(logu) = e U with ¢ > 0; k(u) is completely
monotone orRS. buth(y) is not completely monotone dg, since

h'(y) = —h(y)ce’(1—ce') <0

for y close to—c. Hence (7.20) is true.
Assertion (7.21) fon € (—,1) is automatic from (7.20). Faw € (1,2), com-
bine (7.20) with the condition of zero mean. O

Whenu € L, letl, denote the measurein the representation (1.6) of,. We
give some moment properties of distributiond.in

Proposition 7.15.Let i € Lo,. LetO< a < 2.
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(i) 1f r((0,a]) > O, then [za [X|* u(dx) = co.
(i) Suppose thdi,((0,a]) =0. Then,[pa [X|% p(dX) < oo if and only iff(q,2)(B—
a) "1 (dB) < «.

Proof. SinceAg in (1.6) satisfies\z(S) = 1, we have
XTv(dx) = / Iu(d /mr“’ﬁ’ldr.
./\x|>l| "Vu(d) J(0,2) ul B). 1

Since [;°r?=P=dr is infinite for § < a and (B — a)~* for B > a, our assertions
follow. ad

Proposition 7.16.(i) Let u € L., and suppose that is not Gaussian (that is;, #
0). Letag be the infimum of the supportBf. Thenag € [0,2) and [a |X|? p(dx) =
oo for a € (ap,2). If ap > 0, then [a [X|? 1 (dX) < o for o € (0, ap).

(i) LetO < o < 2. There existgt € L{%? such that/pa |X|¥ p(dX) = co.
Proof. Assertion (i) follows from Proposition 7.15. To see (ii), choeses (a,2),
let " (dB) = 14,q(B)dB, and use Proposition 7.15 (ii). a

Remark 7.17.The identity (7.5) expresses the iteration/gf, for a # 1. The it-
eration of a stochastic integral mappigig generates nested classes of their ranges.
The description of their intersection is an interesting problem. See Maejima and
Sato [27] and the references therein. O

7.2 Lpg, LY

pa» @ndLy o for a € (—,2) with fixed p

Little is known about the one-parameter familigs, o : o € (—,2)}, {L%a: ac
(—0,2)}, and{L} ;: a € (—,2)} for fixed p.

Lemma 7.18.Let n be a positive integer. If(f) is monotone of order n oR, then,
for any a> 0, € @ f(r) is monotone of order n oR.
Proof. This follows from Lemma 5.17, a5 @ is completely monotone dR. O

Theorem 7.19.Let n be a positive integer. Then, fero < a < a’ < 2,

0 0
Ln,a 2 Ln,a'7 Ln,a 2 I-n

o and L5, 2L8 (7.22)

Proof. Step 1 Let us prove thaty, > Lﬁ,a/- Letu e Lﬁ,a/. Thenv, has radial

decomposition(A (df),u*alflhg(logu)du) with hg (y) monotone of orden on R.
Let

h (y) = e (@~ Dhe(y),

Thenh*’g (y) is monotone of ordemonR by the lemma above, arm”’/*lhf (logu) =
u~*h; (logu). Hencep € LY 4.
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Step 2 Let us proveLng O Lng andLi, DL .

If a < 1, then these follow
from Step 1. Suppose = 1 and letu € L, o+ = Lﬂ_a,. Then, Jpa |X|p(dX) < 0 and
JraXxp(dx) =0 from Theorem 6.12 (ii). Sincg € I'_ﬁl from Step 1y, € %(Akl).
Thus there isv® € D(A},) such thatv, = AL,v0. We have -1 [X|vO(dx) < e
from Theorem 6.2. Sinc@, ., [X|V(dX) < e, we have

b o
0 |In11(s)x\>1

In1(s)Xv0(dx) < oo.

Moreover,

=— XV dx:—/wds/ I 1(s)xv0(dx).
W /|x\>1 u(dX) 0 In1(s)x/>1 n1(SPv(dx)

Choosep € ID such thaty, = V0, A, = (f&’In1(5)?ds) Ay, andy, = — Jj=1%
v0(dx). Then it follows from Proposition 3.18 that € D°%(An1) andAn1p = .
Henceu € Lﬂ‘l C Ln1. Similarly, ifa > 1andifu €L, o = Lg thenpy € Lpg =
L2,

IrL%tep 3To show the strictness of the inclusion, kbe a non-zero finite measure
onSand leth(y) = (—y)”*ll(,w,o) (y), which is monotone of orderonR (Example
2.17 (a)). Ther{A (d€),u~th(logu)du) is a radial decomposition of aélvy mea-
surev, sincefo1 ut~?h(logu)du < e. Let u € ID with v, = v. Thenu € L, but
ue Lﬁ‘a/, as is seen by an argument similar to the proof of Theorem 5.19. Indeed,
we have

,G”

u~h(logu) = u=~h(logu)
for )
h(y) = €9 (—y)" L e ) (¥),
which is not monotone of any order dhfrom Proposition 2.13 (iii). Strictness of
the first and second inclusions in (7.22) is obtained from that of the third. O

Remark 7.20.0pen question: Is (7.22) true fpre RS in place ofn ? O

AcknowledgmentsThe author thanks Makoto Maejima andctor Ferez-Abreu for their constant
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