SELFDECOMPOSABILITY AND SEMI-SELFDECOMPOSABILITY IN SUBORDINATION OF CONE-PARAMETER CONVOLUTION SEMIGROUPS

KEN-ITI SATO

ABSTRACT. Extension of two known facts concerning subordination is made. The first fact is that, in subordination of 1-dimensional Brownian motion with drift, selfdecomposability is inherited from subordinator to subordinated. This is extended to subordination of cone-parameter convolution semigroups. The second fact is that, in subordination of strictly stable cone-parameter convolution semigroups on \mathbb{R}^d , selfdecomposability is inherited from subordinator to subordinated. This is extended to semi-selfdecomposability.

1. Introduction

A subset K of \mathbb{R}^N is called a cone if it is a non-empty closed convex set which is closed under multiplication by nonnegative reals and contains no straight line through 0 and if $K \neq \{0\}$. Given a cone K, we call $\{\mu_s \colon s \in K\}$ a K-parameter convolution semigroup on \mathbb{R}^d if it is a family of probability measures on \mathbb{R}^d satisfying

$$\mu_{s_1} * \mu_{s_2} = \mu_{s_1 + s_2} \quad \text{for } s_1, s_2 \in K,$$

(1.2)
$$\mu_{ts} \to \delta_0 \quad \text{as } t \downarrow 0, \text{ for } s \in K,$$

where δ_0 is delta distribution located at $0 \in \mathbb{R}^d$. Convergence of probability measures is understood as weak convergence. It follows from (1.1) and (1.2) that $\mu_0 = \delta_0$.

Subordination of a cone-parameter convolution semigroup is defined as follows. Let K_1 and K_2 be cones in \mathbb{R}^{N_1} and \mathbb{R}^{N_2} , respectively. Let $\{\mu_u \colon u \in K_2\}$ be a K_2 -parameter convolution semigroup on \mathbb{R}^d and $\{\rho_s \colon s \in K_1\}$ a K_1 -parameter convolution semigroup on \mathbb{R}^{N_2} supported on K_2 (that is, $\operatorname{Supp}(\rho_s) \subseteq K_2$). Define a probability measure σ_s on \mathbb{R}^d by

(1.3)
$$\sigma_s(B) = \int_{K_2} \mu_u(B) \rho_s(du) \quad \text{for } B \in \mathcal{B}(\mathbb{R}^d),$$

where $\mathcal{B}(\mathbb{R}^d)$ is the class of Borel sets in \mathbb{R}^d . Then $\{\sigma_s \colon s \in K_1\}$ is a K_1 -parameter convolution semigroup on \mathbb{R}^d . This procedure to get $\{\sigma_s \colon s \in K_1\}$ is called subordination of $\{\mu_u \colon u \in K_2\}$ by $\{\rho_s \colon s \in K_1\}$. Convolution semigroups $\{\mu_u \colon u \in K_2\}$, $\{\rho_s \colon s \in K_1\}$, and $\{\sigma_s \colon s \in K_1\}$ are respectively called subordinand, subordinating (or subordinator), and subordinated.

Cone-parameter convolution semigroups on \mathbb{R}^d and their subordination are introduced in Pedersen and Sato [11]. Their basic properties are proved in Theorems

2.8, 2.11, and 4.4 of [11]. A number of examples are given there. In Barndorff-Nielsen, Pedersen, and Sato [1], several models leading to \mathbb{R}_+ -parameter convolution semigroups supported on \mathbb{R}_+^N are discussed, including some financial models. Here $\mathbb{R}_+ = [0, \infty)$ and $\mathbb{R}_+^N = (\mathbb{R}_+)^N$.

In \mathbb{R}_+ -parameter case, any convolution semigroup on \mathbb{R}^d corresponds to a unique (in law) Lévy process. For a general cone K, any K-parameter Lévy process $\{X_s: s \in K\}$ on \mathbb{R}^d defined in Pedersen and Sato [12] induces a K-parameter convolution semigroup $\{\mu_s\}$ on \mathbb{R}^d as $\mu_s = \mathcal{L}(X_s)$, the law of X_s . But, for a given K-parameter convolution semigroup on \mathbb{R}^d , neither existence nor uniqueness (in law) of a K-parameter Lévy process which induces the semigroup can be proved in general, as is shown in [12]. The existence is proved when d=1, when K is isomorphic to \mathbb{R}^N_+ , or when μ_s does not have Gaussian part for any s. The non-existence is proved for the canonical (d-dimensional Gaussian) \mathbf{S}_d^+ -parameter convolution semigroup defined in [12] for $d \ge 2$, where \mathbf{S}_d^+ is the cone of $d \times d$ symmetric nonnegative-definite matrices. Concerning the uniqueness, some sufficient conditions for the uniqueness and for the non-uniqueness are given in [12]. For example, if $\{\mu_s\}$ is an \mathbb{R}^2_+ -parameter convolution semigroup on \mathbb{R} such that the Gaussian part of μ_s is nonzero for any $s \neq 0$, then the corresponding \mathbb{R}^2_+ -parameter Lévy process on \mathbb{R} is not unique in law. Subordination of a K_2 -parameter Lévy process on \mathbb{R}^d by a K_1 -parameter Lévy process on K_2 results in a new K_1 -parameter Lévy process on \mathbb{R}^d , as is shown in Pedersen and Sato [12] and earlier, in the case $K_2 = \mathbb{R}^N_+$ and $K_1 = \mathbb{R}_+$, in Barndorff-Nielsen, Pedersen, and Sato [1]. It induces subordination of a cone-parameter convolution semigroup. But subordination of a cone-parameter convolution semigroup is not always accompanied by subordination of a cone-parameter Lévy process.

In this paper we give some results on inheritance of selfdecomposability, semi-selfdecomposability, and some related properties from subordinating to subordinated in subordination of cone-parameter convolution semigroups. Applications to distributions of type $\operatorname{mult} G$ are given.

Semi-selfdecomposable distributions were introduced by Maejima and Naito [8]. Their probabilistic representations were given by Maejima and Sato [9]. Their remarkable continuity properties were discovered by Watanabe [19]. Recent papers of Kondo, Maejima, and Sato [5] and Lindner and Sato [7] studied them in stationary distributions of some generalized Ornstein–Uhlenbeck processes.

2. One-dimensional Gaussian subordinands

Let $G_{a,\gamma}$ denote Gaussian distribution on \mathbb{R} with variance $a \geq 0$ and mean $\gamma \in \mathbb{R}$, where $G_{0,\gamma} = \delta_{\gamma}$. A K-parameter convolution semigroup $\{\mu_u \colon u \in K\}$ is called 1-dimensional Gaussian if, for each $u \in K$, μ_u is $G_{a,\gamma}$ with some a and γ .

A distribution μ on \mathbb{R}^d is said to be selfdecomposable if, for each b > 1, there is a distribution μ' on \mathbb{R}^d such that

(2.1)
$$\widehat{\mu}(z) = \widehat{\mu}(b^{-1}z)\widehat{\mu}'(z), \qquad z \in \mathbb{R}^d.$$

Here $\widehat{\mu}(z)$ and $\widehat{\mu'}(z)$ are the characteristic functions of μ and μ' , respectively. If μ is selfdecomposable, then μ is infinitely divisible.

Noting that selfdecomposability is equivalent to semi-selfdecomposability with span b for all b > 1 (see Section 3 for the definition) and using Theorem 15.8 of [15], we see that an infinitely divisible distribution μ on \mathbb{R}^d with Lévy measure ν

is selfdecomposable if and only if

(2.2)
$$\nu(b^{-1}B) \geqslant \nu(B) \quad \text{for } b > 1 \text{ and } B \in \mathcal{B}(\mathbb{R}^d \setminus \{0\}).$$

The condition (2.2) holds if and only if ν has a polar representation

(2.3)
$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) r^{-1} k_{\xi}(r) dr \quad \text{for } B \in \mathcal{B}(\mathbb{R}^{d} \setminus \{0\}),$$

where $S = \{\xi : |\xi| = 1\}$, the unit sphere in \mathbb{R}^d , λ is a measure on S, and $k_{\xi}(r)$ is a nonnegative function measurable in ξ and decreasing in r > 0 (Theorem 15.10 of [15]). We are using the word *decrease* in the wide sense allowing flatness.

Theorem 2.1. Let K_1 and K_2 be cones in \mathbb{R}^{N_1} and \mathbb{R}^{N_2} , respectively. Let $\{\mu_u : u \in K_2\}$ be a 1-dimensional Gaussian K_2 -parameter convolution semigroup (subordinand), $\{\rho_s : s \in K_1\}$ a K_1 -parameter convolution semigroup supported on K_2 (subordinating), and $\{\sigma_s : s \in K_1\}$ the subordinated K_1 -parameter convolution semigroup on \mathbb{R} . Fix $s \in K_1$. If ρ_s is selfdecomposable, then σ_s is selfdecomposable.

We stress that the Gaussian distribution μ_u is not necessarily centered. For the centered Gaussian (that is strictly 2-stable), the result is largely extended in Theorem 3.1 in Section 3. Historically, Halgreen [4] raised a question equivalent to asking whether the statement of Theorem 2.1 for $K_1 = K_2 = \mathbb{R}_+$ is true. After 22 years, Theorem 1.1 of Sato [16] answered this question affirmatively. The theorem above is an extension of it. In order to prove the theorem, we prepare a lemma.

Lemma 2.2. Let f(r) be a nonnegative decreasing function of r > 0 satisfying $\int_0^\infty (r \wedge 1) r^{-1} f(r) dr < \infty$. Let $a \ge 0$ and $\gamma \in \mathbb{R}$. Then, for every b > 1 and $B \in \mathcal{B}(\mathbb{R} \setminus \{0\})$,

(2.4)
$$\int_0^\infty G_{ra,r\gamma}(b^{-1}B)r^{-1}f(r)dr \geqslant \int_0^\infty G_{ra,r\gamma}(B)r^{-1}f(r)dr.$$

Proof. Let $\{X_t : t \in \mathbb{R}_+\}$ be the Lévy process with distribution $G_{a,\gamma}$ at time 1. Let $\{Z_t : t \in \mathbb{R}_+\}$ be a self-decomposable subordinator with Lévy measure $r^{-1}f(r)dr$ and drift 0. Let $\{Y_t : t \in \mathbb{R}_+\}$ be the Lévy process on \mathbb{R} obtained by subordination of $\{X_t\}$ by $\{Z_t\}$. Then Theorem 30.1 of [15] tells us that the Lévy measure ν^Y of $\{Y_t\}$ is expressed as

$$\nu^{Y}(B) = \int_{0}^{\infty} G_{ra,r\gamma}(B)r^{-1}f(r)dr, \qquad B \in \mathcal{B}(\mathbb{R} \setminus \{0\}).$$

If a > 0, then Theorem 1.1 of [16] establishes that Y_t has a selfdecomposable distribution for any $t \ge 0$. If a = 0, then $\{X_t\}$ is a trivial Lévy process (that is, $X_t = \gamma t$, nonrandom) and $Y_t = \gamma Z_t$, which has a selfdecomposable distribution. In any case, $\{Y_t\}$ is selfdecomposable. Hence $\nu^Y(b^{-1}B) \ge \nu^Y(B)$, which is exactly (2.4).

Proof of Theorem 2.1. Let ν^{μ_u} , ν^{ρ_s} , and ν^{σ_s} denote the Lévy measures of μ_u , ρ_s , and σ_s , respectively. We have $\mu_u = G_{a_u,\gamma_u}$ with some $a_u \ge 0$ and $\gamma_u \in \mathbb{R}$. These a_u and γ_u are continuous functions of u (Theorem 2.8 of [11]). Since μ_u has Lévy measure 0, Theorem 4.4 of [11] says that

$$\nu^{\sigma_s}(B) = \int_{K_2} G_{a_u, \gamma_u}(B) \nu^{\rho_s}(du), \qquad B \in \mathcal{B}(\mathbb{R} \setminus \{0\}).$$

Assume that ρ_s is selfdecomposable. Then ν^{ρ_s} is expressed as in the right-hand side of (2.3) with $d = N_2$. Since $\operatorname{Supp}(\rho_s) \subseteq K_2$, it follows from Skorohod's theorem [17] (or Lemma 4.1 of [11]) that the measure λ is supported on $S \cap K_2$ and that

$$\int_{S\cap K_2} \lambda(d\xi) \int_0^\infty (r\wedge 1) r^{-1} k_\xi(r) dr < \infty.$$

For any b > 1 and $B \in \mathcal{B}(\mathbb{R} \setminus \{0\})$ we have

$$\nu^{\sigma_s}(b^{-1}B) = \int_{K_2} G_{a_u,\gamma_u}(b^{-1}B)\nu^{\rho_s}(du)$$

$$= \int_{S \cap K_2} \lambda(d\xi) \int_0^\infty G_{a_{r\xi},\gamma_{r\xi}}(b^{-1}B)r^{-1}k_{\xi}(r)dr = I \qquad (\text{say})$$

Notice that $k_{\xi}(r)$ is decreasing in r and satisfies $\int_0^{\infty} (r \wedge 1) r^{-1} k_{\xi}(r) dr < \infty$ for λ -almost every ξ and that $a_{r\xi} = ra_{\xi}$ and $\gamma_{r\xi} = r\gamma_{\xi}$ (see Proposition 2.7 of [11]). Thus we can apply Lemma 2.2 to obtain

$$I\geqslant \int_{S\cap K_2}\lambda(d\xi)\int_0^\infty G_{a_{r\xi},\gamma_{r\xi}}(B)r^{-1}k_\xi(r)dr=\nu^{\rho_s}(B).$$

This means that σ_s is selfdecomposable.

Remark 2.3. Let K be a cone and let $\{\mu_s : s \in K\}$ be a K-parameter convolution semigroup on \mathbb{R}^d . Let $s_0 \in K \setminus \{0\}$. If μ_{s_0} is selfdecomposable, then μ_{ts_0} is selfdecomposable for all $t \geq 0$ since $\mu_{ts_0} = \mu_{s_0}^t$, the tth convolution power of μ_{s_0} (Proposition 2.7 of [11]), but μ_{s_1} may not be selfdecomposable for some $s_1 \in K \setminus \{ts_0 : t \geq 0\}$. This follows from Sections 2 and 3 of [11].

Remark 2.4. In Theorem 2.1 let $K_1 = K_2 = \mathbb{R}_+$ and replace "Gaussian" by " α -stable (not necessarily strictly α -stable)", where $\alpha \in (0,2]$. Then the statement for $\alpha = 2$ is exactly Theorem 1.1 of [16]. The statement for $\alpha \in (1,2)$ is not true, which is pointed out by Kozubowski [6] using Theorem 2.1(v) of Ramachandran [13]. It is not known whether the statement for $\alpha \in (0,1]$ is true.

Remark 2.5. If μ is selfdecomposable, then the distribution μ' in (2.1) is uniquely determined by μ and b, and μ' is also infinitely divisible. For nonnegative integers m we define $L_m(\mathbb{R}^d)$ as follows: $L_0(\mathbb{R}^d)$ is the class of selfdecomposable distributions on \mathbb{R}^d ; for $m \geq 1$, $L_m(\mathbb{R}^d)$ is the class of $\mu \in L_0(\mathbb{R}^d)$ such that, for every b > 1, μ' in (2.1) belongs to $L_{m-1}(\mathbb{R}^d)$. Thus we get a strictly decreasing sequence of subclasses of the class $ID(\mathbb{R}^d)$ of infinitely divisible distributions on \mathbb{R}^d . We define $L_\infty(\mathbb{R}^d)$ as the intersection of $L_m(\mathbb{R}^d)$, $m = 0, 1, 2, \ldots$. It is not known even in the case $K_1 = K_2 = \mathbb{R}_+$ whether Theorem 2.1 is true with "selfdecomposable" replaced by "of class L_m " for $m \in \{1, 2, \ldots, \infty\}$.

Remark 2.6. Let $d \ge 2$. Theorem 2.1 cannot be generalized to d-dimensional Gaussian. If $\{\mu_u \colon u \in \mathbb{R}_+\}$ is an \mathbb{R}_+ -parameter convolution semigroup (subordinand) induced by d-dimensional Brownian motion with nonzero drift and $\{\rho_t \colon t \in \mathbb{R}_+\}$ is an \mathbb{R}_+ -parameter convolution semigroup supported on \mathbb{R}_+ (subordinating) of Thorin class (of generalized gamma convolutions, in other words) satisfying some additional condition, then the subordinated \mathbb{R}_+ -parameter convolution semigroup $\{\sigma_t \colon t \in \mathbb{R}_+\}$ on \mathbb{R}^d is not selfdecomposable for any t > 0. This fact was noticed by Takano [18] and Grigelionis [3]. Recall that the Thorin class is a subclass of the class of selfdecomposable distributions. This σ_t supplies an example of an infinitely

divisible non-selfdecomposable distribution whose one-dimensional projections are selfdecomposable, since we can apply Theorem 1.1 of [16] to one-dimensional projections of $\{\mu_u : u \in \mathbb{R}_+\}$. The first example of a distribution with this projection property was constructed in Sato [14].

Remark 2.7. It is not known even in the case $K_1 = K_2 = \mathbb{R}_+$ whether Theorem 2.1 is true with "selfdecomposable" replaced by "semi-selfdecomposable", which will be defined in the next section.

3. Inheritance of semi-selfdecomposability

A distribution on \mathbb{R}^d is called semi-selfdecomposable if there are b>1 and $\mu'\in ID(\mathbb{R}^d)$ such that

(3.1)
$$\widehat{\mu}(z) = \widehat{\mu}(b^{-1}z)\widehat{\mu'}(z), \qquad z \in \mathbb{R}^d.$$

The b in this definition is called a span of μ ; it is not uniquely determined by μ . The class of semi-selfdecomposable distributions on \mathbb{R}^d having b as a span is denoted by $L_0(b^{-1}, \mathbb{R}^d)$. If $\mu \in L_0(b^{-1}, \mathbb{R}^d)$, then μ is infinitely divisible and the distribution μ' is uniquely determined by μ and b. For any positive integer m we inductively define

$$L_m(b^{-1}, \mathbb{R}^d) = \{ \mu \in L_0(b^{-1}, \mathbb{R}^d) \colon \mu' \in L_{m-1}(b^{-1}, \mathbb{R}^d) \}.$$

Then $L_m(b^{-1}, \mathbb{R}^d)$ is a subclass of $L_{m-1}(b^{-1}, \mathbb{R}^d)$. In fact we can prove that the former is a strict subclass of the latter (see Remark 3.1 of [10]). Further we define $L_{\infty}(b^{-1}, \mathbb{R}^d)$ as the intersection of $L_m(b^{-1}, \mathbb{R}^d)$ for $m = 0, 1, \ldots$

Let $0 < \alpha \leq 2$. A distribution μ on \mathbb{R}^d is called strictly α -semistable if $\mu \in ID(\mathbb{R}^d)$ and if there is a real number b > 1 such that

(3.2)
$$\widehat{\mu}(z)^{b^{\alpha}} = \widehat{\mu}(bz), \qquad z \in \mathbb{R}^d,$$

or, equivalently, $\widehat{\mu}(z)^{b^{-\alpha}} = \widehat{\mu}(b^{-1}z)$, $z \in \mathbb{R}^d$. In this case we say that the α -semistable distribution μ has a span b, which is not uniquely determined by μ . If μ is strictly α -semistable on \mathbb{R}^d with a span b, then it is easy to see that $\mu \in L_{\infty}(b^{-1}, \mathbb{R}^d)$, since we have

$$\widehat{\mu}(z) = \widehat{\mu}(z)^{b^{-\alpha}} \widehat{\mu}(z)^{1-b^{-\alpha}} = \widehat{\mu}(b^{-1}z) \widehat{\mu}(z)^{1-b^{-\alpha}}.$$

For description and examples of Lévy measures of semi-selfdecomposable and semistable distributions, see Sections 14 and 15 of [15].

The statement of Remark 2.3 is true also for "semi-selfdecomposable with a span b" and "strictly α -semistable with a span b" in place of "selfdecomposable".

Theorem 3.1. Let K_1 and K_2 be cones in \mathbb{R}^{N_1} and \mathbb{R}^{N_2} , respectively. Let $\{\mu_u : u \in K_2\}$ be a K_2 -parameter convolution semigroup on \mathbb{R}^d (subordinand), $\{\rho_s : s \in K_1\}$ a K_1 -parameter convolution semigroup supported on K_2 (subordinating), and $\{\sigma_s : s \in K_1\}$ the subordinated K_1 -parameter convolution semigroup on \mathbb{R}^d . Suppose that there are $0 < \alpha \le 2$ and b > 1 such that, for every $u \in K_2$, μ_u is strictly α -semistable with a span $b^{1/\alpha}$. Fix $s \in K_1$. Then the following statements are true.

(i) Let
$$m \in \{0, 1, ..., \infty\}$$
. If

(3.3)
$$\rho_s \in L_m(b^{-1}, \mathbb{R}^{N_2}),$$

then

(3.4)
$$\sigma_s \in L_m(b^{-1/\alpha}, \mathbb{R}^d).$$

(ii) Let
$$0 < \alpha' \leq 1$$
. If

(3.5)
$$\rho_s$$
 is strictly α' -semistable with a span b,

then

(3.6)
$$\sigma_s$$
 is strictly $\alpha \alpha'$ -semistable with a span $b^{1/\alpha}$.

Note that strictly 1-semistable distributions supported on a cone are delta distributions. This theorem is an extension of Theorem 4.10 of Pedersen and Sato [11] to the "semi" case. We prepare a lemma. This is an analogue of Lemma 4.11 of [11] and the proof is almost the same.

Lemma 3.2. Let K_2 be a cone in \mathbb{R}^{N_2} . Suppose that ρ is in $L_0(b^{-1}, \mathbb{R}^{N_2})$ and that $\operatorname{Supp}(\rho) \subseteq K_2$. Let ρ' be defined by $\widehat{\rho}(z) = \widehat{\rho}(b^{-1}z)\widehat{\rho'}(z)$, $z \in \mathbb{R}^{N_2}$. Then $\operatorname{Supp}(\rho') \subseteq K_2$.

Proof of Theorem 3.1. Let us prove assertion (i) for m=0. Assume that $\rho_s \in L_0(b^{-1}, \mathbb{R}^{N_2})$. Define ρ_s'' as $\widehat{\rho_s''}(z) = \widehat{\rho_s}(b^{-1}z)$. Then

$$\widehat{\rho}_s(z) = \widehat{\rho_s''}(z)\widehat{\rho_s'}(z)$$

and thus $\rho_s = \rho_s'' * \rho_s'$. Lemma 3.2 tells us that ρ_s' is supported on K_2 . Clearly ρ_s'' is also supported on K_2 . Hence

$$\widehat{\sigma}_{s}(z) = \int_{K_{2}} \widehat{\mu}_{u}(z) \rho_{s}(du) = \iint_{K_{2} \times K_{2}} \widehat{\mu}_{u_{1}+u_{2}}(z) \rho_{s}''(du_{1}) \rho_{s}'(du_{2})$$

$$= \iint_{K_{2} \times K_{2}} \widehat{\mu}_{u_{1}}(z) \widehat{\mu}_{u_{2}}(z) \rho_{s}''(du_{1}) \rho_{s}'(du_{2})$$

$$= \int_{K_{2}} \widehat{\mu}_{b^{-1}u_{1}}(z) \rho_{s}(du_{1}) \int_{K_{2}} \widehat{\mu}_{u_{2}}(z) \rho_{s}'(du_{2}).$$

Using Proposition 2.7 of [11] and the assumption that μ_u is strictly α -semistable with a span $b^{1/\alpha}$, we have

$$\widehat{\mu}_{b^{-1}u}(z) = \widehat{\mu}_u(z)^{b^{-1}} = \widehat{\mu}_u(b^{-1/\alpha}z).$$

It follows that

(3.7)
$$\widehat{\sigma}_s(z) = \widehat{\sigma}_s(b^{-1/\alpha}z) \int_{K_2} \widehat{\mu}_u(z) \rho'_s(du).$$

Since $\int_{K_2} \widehat{\mu}_u(z) (\rho_s')^t (du)$ is subordination of $\{\mu_u\}$ by $\{(\rho_s')^t : t \in \mathbb{R}_+\}$, we see that $\int_{K_2} \widehat{\mu}_u(z) \rho_s' (du)$ is infinitely divisible. This shows that $\sigma_s \in L_0(b^{-1/\alpha}, \mathbb{R}^d)$.

Next, we assume that (i) is true for a fixed $m \in \{0, 1, ...\}$. We claim that (i) is true for m+1. Suppose that $\rho_s \in L_{m+1}(b^{-1}, \mathbb{R}^{N_2})$. Then $\widehat{\rho}_s(z) = \widehat{\rho}_s(b^{-1}z)\widehat{\rho}_s'(z)$ with $\rho_s' \in L_m(b^{-1}, \mathbb{R}^{N_2})$. We have (3.7) since $L_{m+1}(b^{-1}, \mathbb{R}^{N_2}) \subseteq L_0(b^{-1}, \mathbb{R}^{N_2})$. Now $\int_{K_2} \widehat{\mu}_u(z)(\rho_s')^t(du)$ is subordination such that $(\rho_s')^t$ is in $L_m(b^{-1}, \mathbb{R}^{N_2})$. Hence $\int_{K_2} \widehat{\mu}_u(z)\rho_s'(du)$ is the characteristic function of a distribution in $L_m(b^{-1/\alpha}, \mathbb{R}^d)$. It follows that $\sigma_s \in L_{m+1}(b^{-1/\alpha}, \mathbb{R}^d)$, which shows (i) for m+1.

Assertion (i) for $m = \infty$ is a consequence of that for finite m.

To prove (ii), assume (3.5). Let us show (3.6), that is,

(3.8)
$$\widehat{\sigma}_s(z)^{b^{\alpha'}} = \widehat{\sigma}_s(b^{1/\alpha}z).$$

Using

$$\widehat{\rho}_{b^{\alpha'}s}(z) = \widehat{\rho}_s(z)^{b^{\alpha'}} = \widehat{\rho}_s(bz)$$

and

$$\widehat{\mu}_{bu}(z) = \widehat{\mu}_{u}(z)^{b} = \widehat{\mu}_{u}(b^{1/\alpha}z),$$

we obtain

$$\begin{split} \widehat{\sigma}_s(z)^{b^{\alpha'}} &= \widehat{\sigma}_{b^{\alpha'}s}(z) = \int_{K_2} \widehat{\mu}_u(z) \rho_{b^{\alpha'}s}(du) = \int_{K_2} \widehat{\mu}_{bu}(z) \rho_s(du) \\ &= \int_{K_2} \widehat{\mu}_u(b^{1/\alpha}z) \rho_s(du) = \widehat{\sigma}_s(b^{1/\alpha}z), \end{split}$$

completing the proof.

Application to distributions of type mult G. Following Barndorff-Nielsen and Pérez-Abreu [2], we say that a probability measure σ on \mathbb{R}^d is of type mult G if $\sigma = \mathcal{L}(Z^{1/2}X)$, where X is a standard Gaussian on \mathbb{R}^d , Z is an \mathbf{S}_d^+ -valued infinitely divisible random variable, $Z^{1/2}$ is the nonnegative-definite symmetric square root of Z, and X and Z are independent. Here, as in Section 1, \mathbf{S}_d^+ is the class of $d \times d$ symmetric nonnegative-definite matrices and elements of \mathbb{R}^d are considered as column d-vectors. Regarding the lower triangle $(s_{jk})_{k \leqslant j}$ of $s = (s_{jk})_{j,k=1}^d \in \mathbf{S}_d^+$ as a d(d+1)/2-vector, \mathbf{S}_d^+ is identified with a cone in $\mathbb{R}^{d(d+1)/2}$. The \mathbf{S}_d^+ -parameter convolution semigroup $\{\mu_s \colon s \in \mathbf{S}_d^+\}$ on \mathbb{R}^d where μ_s is d-dimensional Gaussian with mean vector 0 and covariance matrix s is called the canonical \mathbf{S}_d^+ -parameter convolution semigroup ([11]). The following fact is known (Theorem 4.7 of [11] and its proof).

Proposition 3.3. Let $\{\mu_u : u \in \mathbf{S}_d^+\}$ be the canonical \mathbf{S}_d^+ -parameter convolution semigroup (subordinand), $\{\rho_t : t \in \mathbb{R}_+\}$ an \mathbb{R}_+ -parameter convolution semigroup on $\mathbb{R}^{d(d+1)/2}$ supported on \mathbf{S}_d^+ (subordinating), and $\{\sigma_t : t \in \mathbb{R}_+\}$ the subordinated \mathbb{R}_+ -parameter convolution semigroup on \mathbb{R}^d . Then σ_1 (or, more generally, σ_t) is of type mult G. Conversely, any distribution on \mathbb{R}^d of type mult G is expressible as σ_1 of such an \mathbb{R}_+ -parameter convolution semigroup $\{\sigma_t : t \in \mathbb{R}_+\}$. The correspondence of the two representations of a distribution of type mult G is that $\rho_1 = \mathcal{L}(Z)$.

We can show the following.

Proposition 3.4. Let σ be a distribution of type $\operatorname{mult} G$, that is, let $\sigma = \mathcal{L}(Z^{1/2}X)$, where X is a standard Gaussian on \mathbb{R}^d , $Z^{1/2}$ is the nonnegative-definite symmetric square root of \mathbf{S}_d^+ -valued infinitely divisible random variable Z, and X and Z are independent.

- (i) Let $m \in \{0, 1, ..., \infty\}$ and b > 1. If $\mathcal{L}(Z) \in L_m(b^{-1}, \mathbb{R}^{d(d+1)/2})$, then $\sigma \in L_m(b^{-1/2}, \mathbb{R}^d)$.
- (ii) Let $0 < \alpha' \le 1$ and b > 1. If $\mathcal{L}(Z)$ is strictly α' -semistable with a span b, then σ is strictly $2\alpha'$ -semistable with a span $b^{1/2}$.

Proof. Recall that a distribution μ is strictly α -stable if and only if it is strictly α -semistable with a span b for all b > 1. Apply Theorem 3.1 combined with Proposition 3.3.

References

- O. E. Barndorff-Nielsen, J. Pedersen and K. Sato, Multivariate subordination, selfdecomposability and stability, Adv. Appl. Probab. 33 (2001), 160–187.
- [2] O. E. Barndorff-Nielsen and V. Pérez-Abreu, Extensions of type G and marginal infinite divisibility, Theory Probab. Appl. 47 (2003), 202-218.
- [3] B. Grigelionis, On subordinated multivariate Gaussian Lévy processes, Acta Appl. Math. 96 (2007), 233–246.
- [4] C. Halgreen, Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions, Zeit. Wahrsch. Verw. Gebiete 47 (1979), 13–17.
- [5] H. Kondo, M. Maejima and K. Sato, Some properties of exponential integrals of Lévy processes and examples, Elect. Comm. in Probab. 11 (2006), 291–303.
- [6] T. J. Kozubowski, A note on self-decomposability of stable process subordinated to self-decomposable subordinator, Stat. Probab. Let. 73(2005), 343–345 and 74 (2005), 89–91.
- [7] A. Lindner and K. Sato, Continuity properties and infinite divisibility of stationary distributions of some generalised Ornstein-Uhlenbeck processes, Ann. Probab. to appear.
- [8] M. Maejima and Y. Naito, Semi-selfdecomposable distributions and a new class of limit theorems, Probab. Theory Relat. Fields 112 (1998), 13–31.
- [9] M. Maejima and K. Sato, Semi-Lévy processes, semi-selfsimilar additive processes, and semistationary Ornstein-Uhlenbeck type processes, J. Math. Kyoto Univ. 43 (2003), 609–639.
- [10] M. Maejima, K. Sato and T. Watanabe, Operator semi-selfdecomposability, (C,Q)-decomposability and related nested classes, Tokyo J. Math. 22 (1999), 473–509.
- [11] J. Pedersen and K. Sato, Cone-parameter convolution semigroups and their subordination, Tokyo J. Math. 26 (2003), 503–525.
- [12] J. Pedersen and K. Sato, Relations between cone-parameter Lévy processes and convolution semigroups, J. Math. Soc. Japan 56 (2004), 541–559.
- [13] B. Ramachandran, On geometric-stable laws, a related property of stable processes, and stable densities of exponent one, Ann. Inst. Statist. Math. 49 (1997), 299–313.
- [14] K. Sato, Multivariate distributions with selfdecomposable projections, J. Korean Math. Soc. 35 (1998), 783–791.
- [15] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press (1999).
- [16] K. Sato, Subordination and self-decomposability, Stat. Probab. Let. 54 (2001), 317–324.
- [17] A. V. Skorohod, Random Processes with Independent Increments, Kluwer Academic Pub. (1991).
- [18] K. Takano, On mixtures of the normal distribution by the generalized gamma convolutions, Bull. Fac. Sci. Ibaraki Univ. Ser. A 21 (1989), 29–41; Correction and addendum, 22 (1990), 49–52.
- [19] T. Watanabe, Absolute continuity of some semi-selfdecomposable distributions and self-similar measures, Probab. Theory Relat. Fields, 117 (2000), 387–405.

Added April 17, 2008. For \mathbb{R}_+ -parameter convolution semigroups the following papers discuss related results: G. S. Choi, S. Y. Joo and Y. K. Kim, Subordination, self-decomposability and semi-stability, Comm. Korean Math. Soc. **21** (2006), 787–794; G. S. Choi, Some results on subordination, self-decomposability and operator semi-stability, Stat. Probab. Let. **78** (2008), 780–784.

 $\label{thm:hachiman-yama} \ 1101\text{-}5\text{-}103, \ \text{Tenpaku-ku}, \ \text{Nagoya}, \ 468\text{-}0074 \ \text{Japan} \\ \textit{E-mail address:} \ \texttt{ken-iti.sato@nifty.ne.jp}$