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Let {Xt : t > 0} be a Lévy process on R with generating triplet (A, ν, γ), that is,

EeizXt = exp

[
t

(
−1

2
Az2 +

∫

R
(eizx − 1− izx1[−1,1](x)) ν(dx) + iγz

)]
,

where A is the Gaussian variance and ν is the Lévy measure of {Xt}. In Sato (2001),

p. 22, the author writes:

Let us consider the behavior of t−1Xt as t →∞. The study of random

walks by Kesten (1970) and Erickson (1973) has the following analogue

in Lévy processes on R. Let m+ and m− be as defined below Corollary

3.1 in Section 3. [That is, m+ =
∫

(0,∞)
xµ(dx) and m− =

∫
(−∞,0)

xµ(dx),

where µ is the distribution of X1.]

Theorem 5.8. Suppose that m+ = ∞ and m− = −∞. Then there

are only three possibilities:

(1) lim
t→∞

t−1Xt = ∞ a. s.;

(2) lim
t→∞

t−1Xt = −∞ a. s.;

(3) lim sup
t→∞

t−1Xt = ∞ and lim inf
t→∞

t−1Xt = −∞ a. s.

Let

K+ =

∫

(2,∞)

x

(∫ −1

−x

ν((−∞, y))dy

)−1

ν(dx),

K− =

∫

(−∞,−2)

|x|
(∫ |x|

1

ν((y,∞))dy

)−1

ν(dx),

where ν is the Lévy measure of {Xt}. Then K+ + K− = ∞ and the

following equivalences are true: (1) holds if and only if K+ = ∞ and

K− < ∞; (2) holds if and only if K+ < ∞ and K− = ∞; (3) holds if

and only if K+ = ∞ and K− = ∞.

Under the condition that m+ = ∞ and m− = −∞, the properties

(1), (2), and (3) above are respectively equivalent to the drifting to

∞, the drifting to −∞, and the oscillating. Since m+ and m− are

expressed by the generating triplet (A, ν, γ), Theorem 5.8 means that
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we have now the classification into the drifting to ∞, to −∞, and the

oscillating in terms of (A, ν, γ).

(end of quote from Sato (2001))

Theorem 5.8 and its proof are suggested in Erickson (1973), p. 373. Here we will

give a proof in detail. Then we will give some examples.

We use the following theorems of Kesten (1970) and Erickson (1973) (see also

Remark 36.10 of Sato (1999)). Let {Sn : n = 0, 1, . . . } be a random walk on R, that

is, S0 = 0 and Sn = Z1 + · · · + Zn, where {Zj : j = 1, 2, . . . } is independent and

identically distributed.

Theorem A. If E[S1 ∨ 0] = ∞ and E[S1 ∧ 0] = −∞, then one of the following

three cases necessarily occurs:

Case 1: lim
n→∞

n−1Sn = ∞ a. s.;

Case 2: lim
n→∞

n−1Sn = −∞ a. s.;

Case 3: lim sup
n→∞

n−1Sn = ∞ and lim inf
n→∞

n−1Sn = −∞ a. s.

Theorem B. Assume that E[S1 ∨ 0] = ∞ and E[S1 ∧ 0] = −∞. Let ρ be the

distribution of S1 and define

J+ =

∫

(0,∞)

x

(∫ 0

−x

ρ(−∞, y)dy

)−1

ρ(dx),

J− =

∫

(−∞,0)

|x|
(∫ |x|

0

ρ(y,∞)dy

)−1

ρ(dx).

Then,

J+ = ∞ and J− < ∞ ⇐⇒ Case 1,

J+ < ∞ and J− = ∞ ⇐⇒ Case 2,

J+ = ∞ and J− = ∞ ⇐⇒ Case 3.

Now Theorem 5.8 quoted above follows from these two theorems.

Proof of Theorem 5.8. The assumptions m+ = ∞ and m− = −∞ are respectively

equivalent to
∫
(1,∞)

xν(dx) = ∞ and
∫
(−∞,0)

xν(dx) = −∞ (see Theorem 25.3 and

Proposition 25.4 of Sato (1999)). Let {X ′
t : t > 0} and {X ′′

t : t > 0} be independent

Lévy processes with generating triplets (0, [ν]{|x|>1}, 0) and (A, [ν]{|x|61}, γ), respec-

tively. Here [ν]D denotes the restriction of ν to a set D. Then {X ′
t + X ′′

t } is identical
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in law with {Xt}, so that it is enough to prove the theorem for {X ′
t + X ′′

t } in place

of {Xt}. The process {X ′′
t } satisfies E|X ′′

1 | < ∞ and hence limt→∞ t−1X ′′
t = EX ′′

1

a. s. by the strong law of large numbers (see Theorem 36.5 of Sato (1999)). Thus it

is enough to prove the theorem for {X ′
t}. Notice that the quantities K+ and K− for

{X ′
t} are exactly those for {Xt}. Let c = ν({|x| > 1}). Since the process {X ′

t} is a

compound Poisson process, we may assume X ′
t = SNt , where {Sn} is a random walk

with the distribution of S1 being ρ = c−1[ν]{|x|>1}, {Nt} is a Poisson process with

parameter c, and {Sn} and {Nt} are independent. We have limt→∞ t−1Nt = c a. s.

Thus

lim sup
t→∞

X ′
t

t
= lim sup

t→∞

Nt

t

SNt

Nt

= c lim sup
n→∞

Sn

n

and similarly

lim inf
t→∞

X ′
t

t
= c lim inf

n→∞
Sn

n
.

Notice that E[S1 ∨ 0] = ∞ and E[S1 ∧ 0] = −∞. Thus, by Theorem A, one of Cases

1, 2, and 3 must occur concerning the behavior of {n−1Sn}. These correspond to (1),

(2), and (3), respectively, concerning the behavior of {t−1Xt}. We claim that

K+ = ∞ ⇐⇒ J+ = ∞,(*)

K− = ∞ ⇐⇒ J− = ∞.(**)

These equivalences will establish the latter half of Theorem 5.8. Let, for x > 1,

M+(x) =

∫ x

1

ν((y,∞))dy, M−(x) =

∫ x

1

ν((−∞,−y))dy =

∫ −1

−x

ν((−∞, y))dy.

Since [ν]{|x|>1} = cρ, we have, for x > 1,

M+(x) = c

∫ x

1

ρ((y,∞))dy = c

∫ x

0

ρ((y,∞))dy − cρ((1,∞)),

M−(x) = c

∫ −1

−x

ρ((−∞, y))dy = c

∫ 0

−x

ρ((−∞, y))dy − cρ((−∞,−1)).

Note that

K+ =

∫

(2,∞)

x

M−(x)
ν(dx), K− =

∫

(−∞,−2)

|x|
M+(|x|)ν(dx).
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It follows from
∫
(1,∞)

xν(dx) = ∞ and
∫
(−∞,−1)

xν(dx) = −∞ that M+(∞) = ∞ and

M−(∞) = ∞. Hence,

K+ = ∞ ⇐⇒
∫

(2,∞)

xν(dx)

M−(x) + cρ((−∞,−1))
= ∞

⇐⇒
∫

(2,∞)

xρ(dx)∫ 0

−x
ρ((−∞, y))dy

= ∞

⇐⇒ J+ = ∞

and, similarly,

K− = ∞ ⇐⇒
∫

(−∞,−2)

|x|ν(dx)

M+(|x|) + cρ((1,∞))
= ∞

⇐⇒
∫

(−∞,−2)

|x|ρ(dx)∫ |x|
0

ρ((y,∞))dy
= ∞

⇐⇒ J− = ∞.

Thus we get (*) and (**). The assertion K+ +K− = ∞ is a consequence of the other

assertions, but its direct proof can be obtained as in p. 376 of Erickson (1973). This

finishes a proof of Theorem 5.8.

As is written below Theorem 5.8, under the assumption that m+ = ∞ and

m− = −∞,

(1) ⇐⇒ lim
t→∞

Xt = ∞ a. s. (drifting to ∞);

(2) ⇐⇒ lim
t→∞

Xt = −∞ a. s. (drifting to −∞);

(3) ⇐⇒ lim sup
t→∞

Xt = ∞ and lim inf
t→∞

Xt = −∞ a. s. (oscillating).

Indeed, the implication from the left to the right is obvious. Since the three conditions

on the right are mutually exclusive and since (1), (2), and (3) are exhaustive by virtue

of Theorem 5.8, the implication from the right to the left follows.

Examples. Let us consider some examples. In each of them the left tail of the

Lévy measure is strictly fatter than the right tail. Some of them satisfy (3) while the

others satisfy (2). In the following, c1 and c2 are positive constants.

(i) Let 0 < β < α 6 1. Let

ν(dx) =

{
c1x

−1−αdx for large x

c2|x|−1−βdx for large |x| with x < 0.
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Then K+ < ∞ and K− = ∞. Hence (2) holds, that is, limt→∞ t−1Xt = −∞. If,

moreover, α < 1, then drifting to −∞ of this example is shown in Example 48.5 of

Sato (1999) by another method.

(ii) Let 0 < α < 1 and β > 0. Let

ν(dx) =

{
c1x

−1−αdx for large x

c2|x|−1−α(log |x|)β dx for large |x| with x < 0.

If β > 1, then K+ < ∞ and K− = ∞, and thus (2) holds. If β 6 1, then K+ = ∞
and K− = ∞, and hence (3) holds and oscillating.

(iii) Let

ν(dx) =

{
c1x

−2dx for large x

c2|x|−2(log |x|)β dx for large |x| with x < 0

with β > 0. Then K+ < ∞ and K− = ∞. Hence (2) holds.

(iv) (Erickson (1973) p. 374 for β = 1) Let β > 0 and let

ν(dx) =

{
c1x

−2dx for large x

c2|x|−2(log log |x|)β dx for large |x| with x < 0.

If β > 1, then K+ < ∞ and K− = ∞, and thus (2) holds. If β 6 1, then K+ = ∞
and K− = ∞, and thus (3) holds.

Remark 1. For the examples that satisfy (3), a question whether they are

recurrent or transient arises. The author believes the case 0 < β 6 1 of the example

(ii) is transient. But he has no conjecture in the case 0 < β 6 1 of (iv).

Remark 2. There are regrettable errors in the last two lines in p. 256 of Sato

(1999). The definitions of K+ and K− there should be changed to those in Theorem

5.8 of Sato (2001) quoted above.
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Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions, Cambridge University
Press, Cambridge.
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